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In fond memory
of my parents

From the Author

This textbook on mathematical analysis is based on many years’
experience of lecturing at a higher technical college. Its aim is to
train the students in active approach to mathematical exercises,
as is done at a seminar.

Much attention is given to problems improving the theoretical
background. Therefore standard computational exercises are supple-
mented by examples and problems explaining the theory, promo-
ting its deeper understanding and stimulating precise mathema-
tical thinking. Some counter-examples explaining the need for cer-
tain conditions in the formulation of basic theorems are also in-
cluded.

The book is designed along the following lines. Each section
opens with a concise theoretical introduction containing the prin-
cipal definitions, theorems and formulas. Then follows a detailed
solution of one or more typical problems. Finally, problems with-
out solution are given, which are similar to those solved but
contain certain peculiarities. Some of them are provided with hints.

Each chapter (except Chap. IV and V) closes with a separate
section of supplementary problems and questions aimed at reviewing
and extending the material of the chapter. These sections should
prove of interest to the inquiring student, and possibly also to
lecturers in selecting material for class work or seminars.

The full solutions developed in the text pursue two aims: (1)
to provide lecturers with a time-saver, since they can refer the
students to the textbook for most of the standard exercises of a
computational character and concentrate mainly on the solution
of more sophisticated problems, thus gaining time for more rewar-
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ding work; and (2) to meet the needs of those who are working
on their own or following correspondence courses, providing a sub-
stitute for the oral explanations given to full-time students.

The student will find the book most useful if he uses it acti-
vely, that is to say, if he studies the relevant theoretical material
carefully before going on to the worked-out solutions, and finally
reinforces the newly-acquired knowledge by solving the problems
given for independent work. The best results will be obtained
when the student, having mastered the theoretical part, immedia-
tely attacks the unsolved problems without referring to the text
solutions unless in difficulty.

[saac Maron



Chapter 1

INTRODUCTION
TO MATHEMATICAL ANALYSIS

§ 1.1. Real Numbers.
The Absolute Value of a Real Number

Any decimal fraction, terminating or nonterminating, is called

a real number.
Periodic decimal fractions are called rational numbers. Every

rational number may be written in the form of a ratio, % , of two

integers p and ¢, and vice versa.

Nonperiodic decimal fractions are called irrational numbers.

If X is a certain set of real numbers, then the notation x€ X
means that the number x belongs to X, and the notation xQEX
means that the number x does not belong to X.

A set of real numbers x satisfying the inequalities a < x < b,
where a and b are fixed numbers, is called an open interval (a, b).
A set of real numbers x satisfying the inequalities a<Cx<{b is
called a closed interval [a, b]. A set of real numbers x, satisfying
the inequalities a<Cx <b or a<<x<(b, is called a half-open in-
terval [a, b) or (a, b]. Open, closed, and half-open intervals are
covered by a single term interval.

Any real number may be depicted as a certain point on the
coordinate axis which is called a proper point. We may also intro-
duce two more, so-called improper points, oo and —oo infinitely
removed from the origin of coordinates in the positive and nega-
tive dircctions, respectively. By definition, the inequalities —oo <
< x < 4 oo hold true for any real number x.

The interval (a—e, a+¢) is called the e-neighbourhood of the
number a.

The set of real numbers x > M is called the M-neighbourhood
of the improper point 4 oo.

The set of real numbers x << M is called the M-neighbourhood
of t.e improper point —oo.

The absolute value of a number x (denoted |x|) is a number
that satisfies the conditions

|x|=—x if x<O0;
[x|=x if x=0.



12 Ch. 1. Introduction to Mathematical Analysis

The properties of absolute values are:

(1) the inequality |x|<<a means that —a<<x<{a;

(2) the inequality |x|>a means that x >a or x << —a;
@) lxxy|<|x|+1yl;

@ lxxy|=[lxl—1yll;

©6) lxyl=1xllyl;

©) |2|= 1@+ 0.

m
1.1.1. Prove that the number
0.1010010001...1000...01...

——
n

is irrational.

Solution. To prove this, it is necessary to ascertain that the
given decimal fraction is not a periodic one. Indeed, there are n
zeros between the nth and (n- 1)th unities, which cannot occur
in a periodic fraction.

1.1.2. Prove that any number, with zeros standing in all deci-
mal places numbered 10” and only in these places, is irrational.

1.1.3. Prove that the sum of, or the difference between, a ra-
tional number @ and an irrational number P is an irrational
number.

Solution. Consider the sum of a and B. Suppose a+f=79y is a
rational number, then p=vy—a is also a rational number, since
it is the difference between two rational numbers, which contra-
dicts the condition. Hence, the supposition is wrong and the number
o+ P is irrational.

1.1.4. Prove that the product af and the quotient a/f of a
rational number e =40 and an irrational number P is an irraticnal
number.

1.1.5. (a) Find all rational values of x at which y=} x*+x+3
is a rational number.

Solution. (a) Suppose x and y=l/x2—|-x+3 are rational num-
bers. Then the diflerence y—x=gq is also a rational number. Let
us now express x through ¢

y—x=l/x“+x+3—x:q,
Ve+x+3=q+x,
X4 x4+ 3=+ 2qx - X%,
=3

X=1—g,

By a direct check it is easy to ascertain that g=41/,.



§ 1.1. Real Numbers. The Absolute Value of Real Number 13

Prove the reverse, namely, y=l/x2+x+3 is a rational number

if x=‘f—2_12:j-7, where ¢ is any rational number not equal to 1/,.
Indeed,
Vs T (¢*—3)*
y‘_‘l/x2_‘—x+3—' (1 2q)z+ 2q+3—'
_ 1/44—243+7q‘3—6q+9 _ (¢>*—q+3)* _¢*—q+3 = L
=2 V¥V Ta=ger TTimmr \77 %)

The latter expression is rational at any rational ¢ not equal to /,.
(b) Prove that }/2 is an irrational number.

1.1.6. Prove that the sum J/3-+)/2 is an irrational number.

Solution. Assume the contrary, i.e. that the number V3+V2
is rational. Then the number

= vy |
V3-Va= V3+V2

is also rational, since it is the quotient of two rational numbers.
Whence the number

VEI=L|(V3+VT)—(V3—-1V7D)]

is rational, which contradicts the irrational nature of the number
V2 (see Problem 1.1.5). Hence, the supposition is wrong, and the
number V' 3+V'2 is irrational.

1.1.7. Prove that for every positive rational number r satisfying
the condition r* < 2 one can always find a larger rational number
r-+h(h > 0) for which (r+h)®? < 2.

Solution. We may assume h<1. Then h®*<h and (r+h)*<
< rt+-2rh++h. That is why it is sufficient to put r*2rh4-h=2,
i h=2—r¥/2r+1).

1.1.8. Prove that for every positive rational number s satisfying
the condition s? > 2 one can always find a smaller rational number

—k (k> 0) for which (s—k&)* > 2.

1.1.9. Solve the following inequalities:

(@ |2x—3|< 1;

(b) (x—2)2=>4;

(c) x*+2x—8<0;

(d) |2 —Tx412] > x*—Tx+ 12.

Solution. (a) The inequality |2x—3|< 1 is eqivalent to the
inequalities

—1l < 2x—3 <1,
whence
22 <4 and 1 <x <.
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(d) The given inequality is valid for those values of x at which
x*—Tx+12 < 0, whence 3 < x < 4.

1.1.10. Find out whether the following equations have any
solutions:

(@) |x|=x+5; (b) |x]=x—5?

Solution. (a) Atx>=0 we have x=x-45. Hence, there are no
solutions. At x <0 we have —x=2x-+5, whence x=—5/2. This
value satisfies the initial equation.

(b) At x>0 we have x=x—>5. Hence, there are no solutions.
At x< 0 we have —x=x—>5, whence x=25/2, which contradicts
our supposition (x < 0). Thus, the equation has no solution.

1.1.11. Determine the values of x satisfying the following equa-
lities:
x—1] x—1,

(a) oy | Rl &
(b) |x*—5x+6|=— (x*—5x -+ 6).

1.1.12. Determine the values of x satisfying the following equ-
alities:

@) | (R +4x+9)+ (2x—3)|=|x*+4x+9|+|2x—3

(b) |(x*—4)— (x*+2) | = |x*—4|—|x2+2].

Solution. (a) The equality |a+b|=|a|+|b| is valid if and
only if both summands have the same sign. Since

XAy 4+ 9=(x+ 2245 >0

at any values of x, the equality is satisfied at those values of x
at which 2x—32>0, i.e. at x> 3/2.

(b) The equality |a—b|=|a|—]|b| holds true if and only if a
and b have the same sign and |a|>=|b]|.

In our case the equality will hold true for the values of x at
which

xt—4=x242.
Whence .
2—2>=>1; |x|=V3.

1.1.13. Solve the inequalities:
(@) |3x—5|—|2x+3|>0;
(b) |x*—5x| > x| —|5x].

1.1.14. Find the roots of the following equations.

(a) |sinx|=sinx+1;

(b) x*—2|x|—3=0.

Solution. (a) This equation will hold true only for those values
of x at which sinx <0, that is why we may rewrite it in the
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following way:
—sinx =sinx+1, or sinx=—!/,;

whence x =nk—(—1)*n/6 (=0, =1, £2, ...).

(b) This equation can be solved in a regular way by considering
the cases x>0 and x<{0. We may also solve this equation re-
writing it in the form

|x|2—2|x]—3=0.
Substituting y for |x|, we obtain
y'—2y—3=0,

whence y, =3, y,=—1. Since y=|x|>=0, the value y,=—1 does
not fit in. Hence

y=|x|=3,
ie. x,=-—3, x,=3.

§ 1.2. Function. Domain of Definition

The independent variable x is defined by a set X of its values.

If to each value of the independent variable x€& X there corres-
ponds one definite value of another variable y, then y is called
the function of x with a domain of definztzon (or domain) X or,
in functional notation, y=y (x), =f(x), or y=¢(x), and so
forth. The set of values of the functlon y (x) is called the range
of the given function.

In particular, the functions defined by the set of natural num-
bers 1, 2, 3, ..., are called numerical sequences. They are written
in the following way: x;, X,, ..., %, ... or {x,}.

1.2.1. Given the function f(x) = (x4 1)/(x—1). Find f(2x), 2f (x),
F ), [F ()]

Solutton
2 1
feo=2El of (=2l

Fot =5t [ el = ("*’) :
1.2.2. (a) Given the function

l—x
f()C) = ‘Ogm .
Show that at x,, x,€(—1, 1) the following identity holds true:

Pl T = (ke ),
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Solution. At x€(—1, 1) we have (1—x)/(l—|—x)>0 and hence

1—x,
f(x) 4T (xp) = log == H— L+ log l—|—x lOg(H-ii;EH—izi M

On the other hand,

_ Xt x
f<;c—1'_—|;x; ):log 14 x1x5 —1lo XXy —X—%
1%2 14

x0T aata T
14 xyx,

—xq) (1 —x5)
= log { u+x1)(l+x2> ’

which coincides with the right-hand member of expression (1).
(b) Given the function f(x)=(a*+4-a"%)/2 (a >0). Show that
fx+y)+F(x—y)=2](x)](y)
1.2.3. Given the function f(x)=(x41)/(x*—1). Find [(—1);
fa+1); fa+1.
1.2.4. Given the function f(x)=x*—1. Find

[®)—F () a-t+h
Ta—(b;ﬁa) and f<_2‘).

1.2.5. Given the function

3= —1, —1<x<0O,
fx)= { tan(x/2), 0<x < m,
X(x*—=2), a<x<6.

Find f(—1), f(/2), [(27/3), [ (4), [ (6).
Solution. The point x——l lies w1thm the interval [—1, 0).
Hence
f(—=l)=3"1"—~1=2.
The points x=mn/2, x=2n/3 belong to the interval [0, ).
Hence
f(r/2) =tan(n/4)=1; f(2%/3) =tan(/3)=}3.
The points x=4, x=06 belong to the interval [m, 6]. Hence
4 2 . _ 3
fA) =g==7: 16)= 36 2 =17
1.2.6. The function f(x) is defined over the whole number scale
by the following law:
2x% + 1. if x<{2,
f(x) - l/(x—2), if 2 <x<3,
2x—0, if x> 3.
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Find: f(VV'2), f(V/'8), f(/ log, 1024).

1.2.7. In the square ABCD with side AB=2 a straight line
MN is drawn perpendicularly to AC. Denoting the distance from
the vertex A to the line MN as x, express through x the area S
of the triangle AMN cut off from the square by the straight

line MN. Find this area at x=}/2/2

!

and at x=2 (Fig. 1). 8 N
Solution. Note ’_t_hat AC =2 I/_Q_, M\ Q
hence 0<{x<C2V 2. fx<<V 2, N
then N
S(x)=Sp amn =x%. <
If x>1V2, then s
S(x) =4—Q2V2 —xp=—x+
+4x)V2 —4. A N D
Thus, Fig. 1
S(x)={ A Isx<V2,
—x*+4xV2 —4, V2<x<2V2.

Since V2/2<V2,S1V2/2=2/22="1, Since 2>V72,
S2)=—4+8V2 —4=8(J/2 —1).

1.2.8. Bring the number a,, which is equal to the nth decimal
place in the expansion of /2 into a decimal fraction, into cor-
respondence with each natural number a. This gives us a certain
function a, =¢ (n). Calculate ¢ (1), ¢(2), ¢ (3), ¢ (4).

Solution. Extracting a square root, we find V2 =1.4142... .
Hence

e()=4 ¢@2) =1L ¢@B) =4 ¢@H=2
1.2.9. Calculate f (x)=49/x? 4 x? at the points for which 7/x + x=3.

Solution. f(x)=49/x*+ x*=(T/x+ x)*— 14, but 7/x+4 x=3, hence
f(x) =9—14=—5.

1.2.10. Find a function of the form f(x)=ax*+bx+ec, if it is
known that [(0)=5; f(—1)=10; f(1)=6.
Solution.

f(0)=5=a-024+b-04c,
f(—y=10==a—b-+c,
f(l)=6=a-+40b-+c.
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Determine the coefficients a, b, ¢ from the above system. We have:
a=3; b=—2; ¢=>5; hence f(x) 3x2—2x+5.

1.2.11. Find a function of the form
f(x)=a+b0” (€ >0),
il f(0)=15; f(2)=30; f(4)=
1.2.12. Find ¢ [¢(x)] and ¢[e (x)] if
@ (x)=x* and ¢ (x) =2*%
Solution.
¢y )] =[px]= @ =2%,
¥ [ (x)] =27 ® =2+,

1.2.13. Given the function

Find f@3x); f*%); 3f (x); [f(x)]°.
1.2.14. Let

at 0<<x<,
3x—1 at 1<<x<3.

1.2.15. Prove that if for an exponential function y=a*(a > 0;
a==1) the values of the argument x=x, (n=1, 2, ...) form an
arithmetic progression, then the corresponding values of the func-
tion y,=a*»(n=1, 2,...) form a geometric progression.

1.2.16. f(x)= x>+ 6, ¢ (x) =5x. Solve the equation f(x)=|¢(x)].
1.2.17. Find f(x) if

3% at —1 <x<0,
f(x) [

fx+1)=x2—3x+2.
1.2.18. Evaluate the functions
f()=x*+1/x* and @ (x) =x*4 1/x*
for the points at which 1/x+x=5.
1.2.19. f(x)=x+1; ¢ (x) =x—2; solve the equation
T +e@[=F(x)|+]eox)].

1.2.20. A rectangle with altitude x is inscribed in a triangle
ABC with the base b and altitude h. Express the perimeter P and
area S of the rectangle as functions of x.



$§ 1.2. Function. Domain of Definition 19

1.2.21. Find the domains of definition of the following functions:
@fE=Vx—14+Vb—x;

b) F () =V P—x—2+ ‘

l/3+2x—x2;

X
() f(x)= V—-:;—:-Q

(d) f(x)=Vsinx—1;

@ (=1 log 275
(

f) f(x)=1log,5;
2 —5x+46
(@) f (x)=log ;zﬁ% ;

(h) f (x) = arcsin *¥=3_ log (4 — x);

2
(l) f(x)= log“ x)ﬂ-Ver?

) f(x)=logcosx;
(k) f (x) = arc cos
1

(M y=]f—|x|_x .

Solution. (a) The domain of definition of the given function
consists of those values of x at which both items take on real
values. To ensure this the following two conditions must be satis-

fied:
x—12>0,
6—x=>=0.
By solving the inequalities we obtain x>1; x<C6. Hence,

the domain of definition of the function will be the segment [1,6].
(e) The function is defined for the values of x for which

By — x2
x4x >0.

3 .
442sinx’

log
This inequality will be satisfied if
HE >0, or 2 —5r+4<0.

Solving the latter mequallty, we find 1 <Cx<{4. Thus, the seg-
ment [1,4] is the domain of definition of the function.

(f) The function is defined for all positive x different from unity,
which means that the domain of definition of the function consists
of the intervals (0, 1) and (1, + oo).
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(k) The function is defined for the values of x for which

< —2 <.

TS 44 2sinx TS
Since 4+2sinx >0 at any x, the problem is reduced to solving
the inequality
3
41 2sinx <l
Whence
3<<4+2sinx, i.e. sinx>—1/,.

By solving the latter inequality we obtain
—E2n<x <IEyokn (k=0, £1, £2, ...

(I) The function is defined for the values of x for which
x| — x>0, whence |x| > x. This inequality is satisfied at x < 0.
ence, the function is defined in the interval (—oo, 0).

1.2.22. Find the domains of definition of the following functions:
(a) f(x)=V arcsin (log, x);

(b) f (x) = 10g2 ]Oga 10g4 x5

(C) f(x)z%_*_Qarc sinx+
() [ (x)=log|4—x*];
() f(x) =V cos (sin x) -+ arc sin l—;—xx2 .

Find the ranges of the following functions:

! .
(f) y= 2—cos 3x ’

1
Vx—2

,

(@ y =‘r_:_67 .
Solution. (a) For the function f(x) to be defined the following
inequality must be satisfied

arc sin (log, x) >0,

whence 0 <Clog, x<C 1 and 1 <Cx<C2.

(b) The function log,log,log,x is defined for log,log,x >0,
whence log,x > 1 and x> 4. Hence, the domain of definition is
the interval 4 < x<< - o0.

(c) The given function is defined if the following inequalities are
satisfled simultaneously:

x5%0; —1<<x<1 and x> 2,

but the inequalities —1<Cx<C1 and x > 2 are incompatible, that
is why the function is not defined for any value of x.
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(e) The following inequalities must be satisfied simultaneously:

1+ x2
T <.

cos(sinx) >0 and '

The first inequality is satisfied for all values of x, the second,
for | x|=1. Hence, the domain of definition of the given function
consists only of two points x= +1.

(f) We have
cos3x = 4—=L

Since
2y—1
Yy

whence, taking into account that y > 0, we obtain

—1<Ccos3x<<1, we have —I1< <1,
—y<2y—1<y or %<y<1-

(g) Solving with respect to x, we obtain
e L VT4

2y
The range of the function y will be determined from the relation
1—4y2 > 0.
Whence
1 1
— e SYS -

1.2.23. Solve the equation
arc tanV x(x + 1) 4- arc sin})/ X+ x+ 1 = x/2.

Solution. Let us investigate the domain of definition of the func-
tion on the left side of the equation. This function will be defined
for

B4+x=0, 024+ x+ 1<,

whence x>+ x=0.

Thus, the left member of the equation attains real values only
at x,=0 and x,=—1. By a direct check we ascertain that they
are the roots of the given equation.

This problem shows that a study of domains of definition of a
function facilitates the solution of equations, inequalities, etc.

1.2.24. Find the domains of definition of the following functions:

Vit 2x+3
(b) y=1log sin(x—3)+} 16 —x3
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x—2,
3 ’

(¢) y=V'3—x-+arc cos

X
(d) y=log(l+x)'

1.2.25. The function f(x) is defined on the interval [0, 1]. What
are the domains of definition of the following functions:

(@) FBx; (b) fF(x—5); (c) f(tanx)?

Solution. The given functions are functions of functions, or su-
perpositions of functions, i. e. composite functions.

a) Let us introduce an intermediate argument u =3x2. Then the
function f(3x?) =f(u) is defined if 0<Cu<Cl1, i.e. 0<C3x2< 1,
whence —1/)/ 3<x<< 1/)/3.

(c) Similarly: 0<Ctanx<C1, whence

En<x<mAtkn (k=0, =1, £2, ...).

1.2.26. The function f (x) is defined on the interval [0, 1]. What
are the domains of definition of the functions

(a) f(sinx); (b) f(2x+3)?

§ 1.3. Investigation of Functions

A function f(x) defined on the set X is said to be non-decreasing
on this set (respectively, increasing, non-iricreasing, decreasing), if
for any numbers x,, x,€ X, x, <x,, the inequality f(x,)<<f(x,)
(respectively, f(x,) < f (), F(x) =1 (), F(x) > (x) is satisfied.
The function f(x) is said to be monotonic on the set X if it pos-
sesses one of the four indicated properties. The function f(x) is
said to be bounded above (or below) on the set X if there exists a
number M (or m) such that f(x)<<M for all x€ X (or m<f(x)
for all x€ X). The function f(x) is said to be bounded on the set X
if it is bounded above and below.

The function f(x) is called periodic if there exists a number
T >0 such that f(x+T)=f(x) for all x belonging to the domain
of definition of the function (together with any point x the point
x-+T must belong to the domain of definition). The least number T
possessing this property (if such a number exists) is called the
period of the function f(x). The function f(x) takes on the maxi-
mum value at the point x,€ X if f(x,) >f(x) for all x€ X, and
the minimum wvalue if f(x,))<{f(x) for all x€ X. A function f (x)
defined on a set X which is symmetric with respect to the origin
of coordinates is called even if f(— x)=f(x), and odd if [(—x)=
)

In analysing the behaviour of a function it is advisable to de-
termine the following:
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The domain of definition of the function.
Is the function even, odd, periodic?
The zeros of the function.
The sign of the function in the intervals between the zeros.
. Is the function bounded and what are its minimum and ma-
ximum values?
The above items do not exhaust the analysis of a function, and
later on their scope will be increased.
1.3.1. Find the intervals of increase and decrease of the func-
tion f(x)=ax*+bx+c, and its minimum and maximum values.
Solution. lIsolating a perfect square from the square trinomial,
we have

TR

dac— b2

f(x):a(x—l—z—b&)?—l——m——

If a> 0, then the function f(x) will increase at those values of x
satisfying the inequality x-+0b/(2a) >0, i. e. at x >—b/(2a), and
decrease when x--b/(2a) <0, i.e. at x <—>b/(2a). Thus, if a >0,

the function f(x) decreases in the interval (——oo, —% and inc-

reases in the interval (— b/(2a), -+ o0). Obviously, at x=—b/(2qa)
the function f (x) assumes the minimum value

fminzf (_2%) =41104—l-1—b2
At a > 0 the function has no maximum value.
Similarly, at a < 0 the function f(x) will increase in the inter-
val /—oo, —2% and decrease in the interval (— b/(2a), oo); at
x=— b/(2a) the function f(x) takes on the maximum value

b 4ac— b
fmax=f<—2_a>=T»
whereas it has no minimum value.
1.3.2. (a) Find the minimum value of the function
y=3x2+bx—1.

(b) Find the rectangle with the maximum area from among all
rectangles of a given perimeter.
Solution. (a) Apply the results of Problem 1.3.1: a =3 >0, b= 5,

¢=— 1. The minimum value is attained by the function at the
point x=—>5/6
_dac—b* 37
ymin_T—_'l_Q'

(b) We denote by 2p the length of the perimeter of the required
rectangle, and by x the length of one of ils sides; then the area S
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of the rectangle will be expressed as
S=x(p—x) or S=px—x_

Thus, the problem is reduced to the determination of the maximum
value of the function S(x)=— x*+4 px. Apply the results of Prob-
lem 1.3.1: a=—1<0, b=p, ¢c=0. The maximum value is attai-
ned by the function at the point x=— b/(2a) =p/2. Hence, one
of the sides of the desired rectangle is p/2, the other side being
equal to p—x=p/2, i. e. the required rectangle is a square.

1.3.3. Show that

(a) the function f(x) =x®*+43x-+5 increases in the entire domain
of its definition;

(b) the function g (x) = x/(1 + x?) decreases in the interval (1, + oco).

Solution. The function is defined for all points of the number
scale. Let us take arbitrary points x, and x,, x, < x, on the number
scale and write the following difference:
[ (xa)—F (%)) = (%3 + 3%, +5) — (x} + 3%, +5) =

= (x2—x1) (X; + X%, + X+ 3) =

= (X,—x,) [(x1+—;-x2>2+%x§ +3]-

Since x,—x, >0 and the expression in the brackets is positive
at all x, and x,, then f(x,)—f(x) >0, i.e. f(x) >f(x,), which
means that the function f(x) increases for all values of x.

1.3.4. Find the intervals of increase and decrease for the follo-
wing functions:
(a) f(x) =sin x-cosx;
(b) tan (x -+ m/3).
Solution. (a) Using the familiar trigonometric formulas, we find
f(x) =V 2cos (x—m/4).
It is known that the function cosx decreases in the intervals
nn<x<L(2n+1)m
and increases in the intervals
@Cn—NnLx<<2nmn (n=0, =1, =2, ...).
Hence, the intervals of decrease of the function f(x) are:
a/d+2nn<<x<n/4+2n+1)n (n=0, £1, ...),
and the intervals of increase of the same function are:
n/d+2n—Dn<x<<n/4+2nn (n=0, =1, ...).
1.3.5. Find the minimum and maximum values of the function
f)y=acosx-t+bsinx (a*+0* > 0).
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Solution. The given function can be represented as:
f(x) =V a*+b® cos (x—a),

where cosa=a/}/ a* + b, sin a = b/} a® + b*. Since |cos(x—a) | < 1,
the maximum value of f(x) equals -+ )} a®+b* (at cos(x—a) =1),
the minimum value of f(x) being equal to —} a®*+b® (at
cos (x—a) = —1).

1.3.6. Find the minimum value of the function

f(x) — 3(x*=2)*+8
Solution. We denote by ¢ (x) the exponent, i. e.
P (X) = (x2—2)*+ 8.

The function f(x)=3¥® takes on the minimum value at the
same point as the function g (x).
Hence

@ (x) = x*—6x% - 12x% = x% [(x*—3)* 4 3].
Whence it is clear that the function ¢ (x) attains the minimum

value (equal to zero) at x=0. That is why the minimum value of
the function f (x) is equal to 3°=1.

1.3.7. Test the function
f (x) =tan x+cot x, where 0 < x < m/2,
for increase and decrease.

1.3.8. Given: n numbers a,, a,, ..., a, Determine the value
of x at which the function

f)=(x—a)*+ (x—a)*+ ...+ (x—a,)

takes on the minimum value.
Solution. Rewrite the function f(x) in the following way:

fx)y=n—2(a,+a,+ ... +a,)x+ @ +a;-+ ... +a}),

wherefrom it is clear that f(x) is a quadratic trinomial ax? + bx 4,
where a=n > 0. Using the results of Problem 1.3.1, we find that
the function assumes the minimum value at x=—b/(2a), i. e. at
x=(a,+a,+...+a,)/n.

Thus, the sum of the squares of deviations of the value of x
from n given numbers attains the minimum value when x is the
mean arithmetic value for these numbers.

1.3.9. Which of the given functions is (are) even, odd; and
which of them is (are) neither even, nor odd?
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(a) f(x) =log (x+ V' 1T+ x*);
l—x

(b) f(x) =log1—;

() f(x) 23 —x+ 1,

@ f 0 =x55.

Solution. (a) It can be seen that f(+ x)+4f(— x) =0. Indeed,

F(+x)+f(—x)=log (x+V TH )+ log(—x+VT+x) =
=log (1 +x2—x?) =0,

hence, f (x) = — f (— x) for all x, which means that the function is odd.
_ 14+x 1—x\-1 1—x
(b) f(—x)—logl_x_log<l+x> ——logl+x
Thus, f(—x)=—Ff(x) for all x from the domain of definition

(—1, 1). Hence, the function is odd.

1.3.10. Which of the following functions is (are) even and which
is (are) odd?

@) f(x)=4—2x*+sin%x;

(b) fx)= l/1+x—|-x2—V1—x+x2;

© fx)= ]__.akx’

(d) f(x)=sinx+cosx;

(e) f(x)=-const.

1.3.11. Prove that if f(x) is a periodic function with period T,
then the function f (ax 4 b), where a > 0, is periodic with period T/a.
Solution. Firstly,

fla(x+T/a)+b] =f[(ax+b)+T]=f(ax+b),

since T is the period of the function f(x). Secondly, let T, be a
positive number such that

fla(x+T,)+b]=F(ax+b).

Let us take an arbitrary point x from the domain of definition
of the function f(x) and put x"=(x—b)/a. Then

Flav +0)=f (a2 b) =[ () =F[a (¢ +T,) +5] =

=f(ax’+b+aT)=f (x+aT)).

Whence it follows that the period T <(aT,, i.e. T,>=T/a and
T/a is the period of the function f(ax-+¥b).

Note. The penodlc function f(x) = 4 sin (0x+ @), where A, o, ¢
are constants, is called a harmonic with amplitude |A |, frequency o
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and initial phase @. Since the function sinx has a period 2m:, the
function A sin(ewx- @) has a period T =2n/w.

1.3.12. Indicate the amplitude | A|, frequency w, initial phase ¢
and period T of the following harmonics:

(@) f(x)=>5sin4x;

(b) f(x)=4sin (3x+ m/4);

(¢) f(x)=3sin(x/2)+ 4cos(x/2).

1.3.13. Find the period for each of the following functions:

(a) f(x)=tan2x;

(b) f (x) = cot (x/2);

(¢) f(x)==sin2mnx.
Solution. (a) Since the function tanx has a period =, the function
tan 2x has a period m/2.

1.3.14. Find the period for each of the following functions:
(@) f(x)=sin*x+ costx;

(b) F(x)=|cos x|

Solution. (a) sin® x4 cos* x = (sin? x -+ cos? x)?* —2sin® xcos® x =

| - | 3 1 . L1
=1——-2—sm22x= I—T(l—cos4x)=T+Tsm(4x—|—?);

whence T =2n/0=2n/4=n/2.

(b) f(x)y=|cosx|=V cos®*x=} (1+cos2x)/2; but the function
cos2x has a period T =m; hence, the given function has the same
period.

1.3.15. Prove that the function f (x) = cos x* is not a periodic one.
Solution. l.et us prove the contrary. Suppose the function has a
period T; then the identity cos(x+ T)*=cosx? is valid.
By the conditions of equality of cosines for a certain integer k
we have
x4+ 2Tx+T? 4+ x* = 2nk.

But this identity is impossible, since £ may attain only integral
values, and the left member contains a linear or quadratic function
of the continuous argument wx.

1.3.16. Find the greatest value of the function

109 =2

2x2 —4x-+3°

1.3.17. Which of the following functions are even, and which are
odd:

@ f=y T=xP+ i/ 0+25
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(b) [(x)=x"—|x};
(©) f(x)=xsin®x—x3;
(d) f(x)=(1+2%)%/2%?
1.3.18. Find the period for each of the following functions:
(a) f(x)=arctan (tan x);
X—n

(b) f(x)=2cos—;

1.3.19. Prove that the functions 3
@) f(x)=x+sinx; (b) f(x)=cosV x

are non-periodic.

§ 1.4. Inverse Functions

Let the function y=7f(x) be defined on the set X and have a
range Y. If for each y €Y there exists a single value of x such that
f (x) =y, then this correspondence defines a certain function x == g(y)
called inverse with respect to the given function y={(x). The suf-
ficient condition for the existence of an inverse function is a strict
monotony of the original function y=/f(x). If the function increases
(cecreases), then the inverse function also increases (dccreases).

The graph of the inverse function x=g (y) coincides with that of
the function y=7f (x) if the independent variable is marked off along
the y-axis. If the independent variable is laid off along the x-axis,
i. e. if the inverse function is written in the form y=g(x), then
the graph of the inverse function will be symmetric to that of the
function y=f(x) with respect to the bisector of the first and third
quadrants.

1.4.1. Find the inverse to the function y=3x+5.

Solution. The function y=3x-5 is defined and increases through-
out the number scale. Hence, an inverse function exists and in-
creases. Solving the equation y=3x-5 with respect to x we obtain
x=(y—>5)/3.

1.4.2. Show that the function y=k/x (k=£0) is inverse to itself.

Solution. The function is defined and monotonic throughout the
entire number scale except x=0. Hence, an inverse function exists.
The range of the function is the entire number scale, except y =0.
Solving the equation y=k/x with respect to x, we get x==Fk/y.

1.4.3. Find the inverse of the function
y=log, (x+Vx*+1), (@>0, as=1).

Solution. The function y=1log, (x+} x4 1) is defined for all x,
since Y x2 41> | x|, and is odd [see Problem 1.3.9 (a)]. It increases
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for positive values of x, hence, it increases everywhere and has an
inverse function. Solving the equation

y=log, (x+V £ +1)
with respect to x, we find
F=x+VEFl aV=—x+V2+]1,
whence
x=—;-(ay—a'l’)=sinh (y Ina).

1.4.4. Show that the functions
fX)=x2—x+1, x>=1/2 and ¢ (x) = 1/2+V x—3/4
are mutually inverse, and solve the equation
R—x+1=1/2 4V x=3/4

Solution. The function y=x*—x+1=(x—1/2)*4-3/4 increases
in the interval 1/2<Cx < oo, and with x varying in the indicated
interval we have 3/4<Cy < oo. Hence, defined in the interval
3/4<{y< oo is the inverse function x=g(y), x> 1/2, which is
found from the equation

—x+4+(1—y)=0.
Solving the equation with respect to x, we obtain
x=g)=12+Vy—=3/4=¢ ()
Let us now solve the equation
R—x+1=1/2+ V x—3/4.

Since the graphs of the original and inverse functions can intersect
only on the straight line y=x, solving the equation x*—x+1=x
we find x=1.

1.4.5. Find the inverse of y=sinx.

Solution. The domain of definition of the function y=sinx is
the entire number scale, the range of the function is the interval
[— 1, 1]. But the condition of existence of an inverse function is
not fulfilled.

Divide the x-axis into intervals nn—n/2 < x<nn+n/2. If nis
even, then the function increases on the intervals nn—m/2 < x<<
<nn+n/2; if n is odd, the function decreases on the intervals
nn—n/2< x<nn+mn/2. Hence, on each of the indicated intervals
there exists an inverse function defined on the interval [— I, 1].
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In particular, for an interval — n/2<Cx<Cm/2 there exists an in-
verse function x=arcsiny.

The inverse of the function y=sinx on the interval nn—n/2<<
< x<<nn+mn/2 is expressed through arcsin y in the following way:

x=(— hHrarcsiny+nn (n=0, =1, =2, ...).

1.4.6. Find the inverse of the given functions:

(a) y=sin Bx—1) at— (/64 1/3) < x < (/64 1/3);
(b) y=arcsin (x/3) at—3<CTx<3;

(C) y=5logx;

(d) y=2x(x—1)_

1.4.7. Prove that the function y=(1—x)/(14x) is inverse to
itself.

§ 1.5. Graphical Representation of Functions

1.5.1. Sketch the graph of each of the following functions:
(@) f(x)=x'—2x"+3;

(b) F () =12

(c) f(x)=sin*x—2sinx;

(d) f (x) =arccos(cos x);

@ fx)=Vsinx

(f) f(x)=x!/logx.

Solution. (a) The domain of definition of the function f (x) is the
entire number scale. The function f(x) is even, hence its graph is
symmetrical about the ordinate axis and it is

y sufficient to investigate the function at x >0.

Let us single out a perfect square f(x)=
= (x*—1)>4-2. Since the first summand
(x*—1)2 >0, the minimum value of the func-
. tion, equal to 2, is attained at the points
Z 7 7 z—% x==1 (see Fig. 2).

The function f(x) decreases from 3 to 2 on
the closed interval 0<Cx<C1 and increases
unboundedly on the open interval 1 < x < oo.

Fig. 2 (b) The domain of definition of the func-

tion f (x) is the entire number scale. The fun-

ction f(x) is odd, therefore its graph is symmetrical about the origin

of coordinates and it is sufficient to investigate the function at
x =0,

Since f(0)=0, the graph passes through the origin. It is obvious
that there are no other points of intersection with the coordinate

al
T
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axes. Note that |f(x)|<{1. Indeed, (1—|x[)*>=00r 1 +x*>=2|x|,
whence

1> A5 =17

Since f(x) =0 at x>0 and f(1)
maximum value of the function f
being zero (see Fig. 3).

=1, in the interval [0, oo) the
(x) equals 1, the minimum value

y
-———-—1 . —
1 1 1 1 1 1
3 2 b1 2 3 z
__________ <
Fig. 3

Let usprove that the function increasesonthe closed interval 0<C
<x<1. Let 0<<x, <x,<<1. Then
2% 2% 264 2xp0 — 20 —2x0yx5
1+5 1+ (48 (1 +x)
2 (xg—xy) (1 —x1%)
T+ (1 4xd)

f(xz)—f (%) =

>0

and [ (x,) > [ (x,).
Similarly, we can show that on the interval (1, oo) the function
decreases. Finally,

f (%) =2x/(1 + x*) < 2x/x* =2/x,

whence it is clear that f(x) tends to zero with an increase in x.
(c) The domain of definition of the function f(x) is the entire
number scale. The function has a period 2m, that is why it is quite
sufficient to investigate it on the interval [0, 2n], where it beco-
mes zero at the points x=0; x=mn;, x=2m.
Writing the given function in the form

f(x)=(1—sinx)2—1,

we note that it increases with a decrease in the function sinx and
decreases as sinx increases. Hence, the function f(x) decreases on
the intervals [0, n/2] and [3m/2, 2n], and increases on the interval
[7/2, 3m/2]. Since f(n/2)= —1, and f(3n/2) =3, the range of the
function is — 1< f(x) <3 (Fig. 4).
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(d) The domain of definition of the function is the entire number
scale. Indeed, |cosx|<C1 at any x, hence, arccos (cosx) has a
meaning. The function f(x) is a periodic one with the period 2=,
hence, it is sufficient to sketch its graph on the interval [0, 2x].
But on this interval the following
equality is true:

3 , f(x)=1 X, 0<xm,

! \ 2n—x, n<{x< 2m.

i Indeed, the first assertion follows
N A e from the definition of the function
N a arc cosx, while the second one can be
proved in the following way. Let us

put x'=2n—x, n<{x<2n; then
0<<x'<<mand

f (x) = arc cos [cos (2n—x')] = arc cus (cos x') = X" = 2m—x.

Fig. 4

Taking all this into consideration, we draw the graph (see Fig. 5).
(e) The function y=V sinx is a periodic one with period 2m;
that is why we may confine ourselves to the interval [0, 2n]. But

the function is not defined in the whole interval [0, 2n], it is
defined only in the interval [0, =], as in the interval (m, 2m) the
radicand is negative. The graph is symmetrical about the straight

Fig. 6

line x =m/2, as well as the graph y=sinx (see Fig. 6). Here we
have an example of a periodic function which does not exist in
the infinite set of intervals.

(f) The domain of definition of the function is

O0<x<land 1 < x < oo.
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Reduce the formula to the form
f(x)___xl/logx =xl°gm 10 — 10.
Hence, the graph of the given function is the half-line y=10

in the right-hand halfplane with the point x=1 removed (see Fig. 7).
1.5.2. Sketch the graphs of funetions defi-

ned by different formulas in different inter- ¥
vals (and in those reducible to them):
sinx at —n<<x<<O, 10 ;
() y={ 2 at 0<x<], :
1/(x—1) at 1 <x<<4 |
—2 at x>0, |
b)yy={ 1/2 at x=0, ol g z
—x* at x <0; Fig. 7

©) y=x+V'x%

(d) y=2/(x+V 5.

Solution. (a) The domain of definition of the function is the
interval [—mn, 4]. The graph of the function consists of a portion
of the sinusoid y=sinx on the interval —n<<x<O0, straight line

y Ay
b
i
|
|
|
o \ 17,
o <4 o1 >z
| 1 1 1 T -/_
-T 1 2 3 4
_1F -2 fe——r
Fig. 8 Fig. 9

y=2 on the interval (0, 1] and a part of the branch of the hyper-
bola y=1/(x—1) on the interval (1,4] (see Fig. 8).

(b) The graph of the function consists of a portion of a cubic
parabola. an isolated point and a half-line (see Fig. 9).

(c) The function may be given by two formulas:

{ 2x, if x>0,
Y 0, if x<O.
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Thus, the graph of our function is a polygonal line (see Fig. 10).

(d) From (c) it follows that the function is defined only in the
interval (0, + o0), y being equal to 1/x (x > 0). Thus, the graph
of our function is the right-hand part of an equilateral hyperbola
(see Fig. 11).

¥
P |
&
2 fy
, 3
40 —— —_
ol 1 o 1 z
Fig. 10 Fig. 11

1.5.3. Sketch the graphs of the following functions:
(a) y=cosx-+|cosx];

(b) y=|x+2|x.
. 2cosx at cosx =0,
Solution. (a) cosx+-|cosx|= 0 at cosx < 0.

Doubling the non-negative ordinates of the graph for the func-
tion y=cosx (the broken line in Fig. 12) and assuming y=0 at

\\ ,/ // \\
L L. | N
N - 7 P
-3712 \\\ni//_/% 0 _lzt_\\\\f’//%z_ 24 ‘2—’) z
Fig. 12

the points where cosx < 0, we can sketch the desired graph (the
solid line in the same figure).
(b) The function |x+2|x may be given by two formulas:

(x+2)x at x>=>—2,
Y=\ —(x+2)x at x<<—2.

Plotting separately both parabolas: y=(x+42)x=(x+1)*—1,
and y=—[(x+1)* — 1], retain only the parts corresponding to
the above indicated intervals. Drawn in a solid line in Fig. 13 is
the graph of the given function, the broken line showing the de-
leted parts of the constructed parabolas.
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1.5.4. Sketch the graph of the function

y=2|x—2|—|x+ 1|+ =x.

Solution. At x>=2

Yy=2x—2)—(x+1)+x=
At —1<Cx<?2

Yy=—2x—2)—(x+1)+x=— 2x43.

2x —5.

Vo !
\ ___'\5—
\ |
\ |
\ | ]
\ | 1
\ y 3 I
\\ /‘JL I i
\YARE /I T : |
=2/\-1 \\ 1 : 1~ __:__
\ H 12 |
\ ! 1 ¥ |
\‘ -1 0 1 V 3
\ -1 ————— 1
\ ]
Fig. 13 Fig. 14

Finally, at x <{—1

Yy=—2(x—2)+(x+1)4+x=5.
Hence, the given function can be rewritten in the following way:

5, x<<—1,
y={ —2+3, —1<<x<?,
2x—5, x=2.

Therefore the graph is a polygonal line
(see Fig. 14).

1.5.5. Sketch the graph of the function
y____2x_2—x'

Solution. Draw graphs for the functions
y,=2* and y,=—2"* (broken lines in
Fig. 15), and add graphically their ordina-
tes. In doing so bear in mind that y, <y <

Fig. 156

< y,, and that gy, tends to zero with an increase in x, whereas y,
tends to zero with a decrease in x (the solid line in Fig. 15).

1.5.6. Sketch the graph of the function
y=xsin x.
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Solution. Being the product of two odd functions gy, =x and
y,=sinx, the function y is an even one, that is why we shall
analyse it for x >=0.

We él)raw graphs for y,=x and y,=sinx (the broken lines in
Fig. 16).

At the points where y,=sinx=0, y=y,-y,=0, and at the
points where y,=sinx=+1, y= 4y, = 4 x. The latter equality

Fig. 16

indicates the expedience of graphing the auxiliary function y, = — x.
Marking the indicated points and joining them into a smooth
curve, we obtain the required graph (the solid line in Fig. 16).

1.5.7. Sketch the graph of the function y=x (x2—1) by multi-
plying the ordinates of the graphs y,=x and y,=x*—1.

1.5.8. Graph the following functions:

(a) y=x/(x*—4), (b) y= 1/arc cosx.

Solution. (a) Since the function is odd, it is sufficient to inves-
tigate it for x >0.

Let us consider it as the quotient of the two functions:

y,=x and y,=x*—4.

Since at x=2 the denominator y,=0, the function is not de-
fined at the point 2. In the interval [0, 2) the function y, increases
from 0 to 2, the function y, is negative and |y, |=4—x? decreases
from 4 to 0; hence, the quotient f(x)=y,/y, is negative and in-
creases in absolute value, i.e. f(x) decreases in the interval [0,2)
from 0 to —oo.

In the interval (2, oo) both functions are positive and increasing.
Their quotient decreases since from 2 <{x, < x, it follows that

Xy X (a—x) (xe+4) 0
B—4 e (2—4)(E—9) <0

Yo— Y=
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The indicated quotient tends to zero asx — oo, since y = ITI%E* — 0.
The general outline of the graph is presented in Fig. 17 (three
solid lines).

(b) Denote y, =arccosx. The domain of definition of this func-

tion |x|<<1. At x=1 we have y,=0, hence, y=1/y, — oo at

|
|
!

,/
ot

!

|
|
\
\
\
\
\

\ -
-1 0 1 z
Fig. 17 Fig. 18

x—1, i. e. x=1 is a vertical asymptote. The function y, decreases
on the entire interval of definition [—1, 1), hence y=1/y, incre-
ases. The maximum value y,=n is attained at x=— 1. Accor-
dingly, the minimum value of the function is 1/m. The solid line
in Fig. 18 represents the general outline of the graph.

Simple Transformations of Graphs

I. The graph of the function y=f(x+a) is obtained from the
graph of the function y={f(x) by translating the latter graph along
the x-axis by |a| scale units in the direction opposite to the sign
of a (see Fig. 19).

II. The graph y=f(x)+b is obtained from the graph of the
function y=/f(x) by translating the latter graph along the y-axis
by |b] scale units in the direction opposite to the sign of b (see
Fig. 20).

%II. The graph of the function y=f (kx) (k> 0) is obtained from
the graph of the function y={f(x) by “compressing” the latter graph
against the y-axis in the horizontal direction & times at 2> 1 and
by “stretching” it in the horizontal direction from the y-axis 1/&
times at £ <1 (see Fig. 21).
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IV. The graph of the function y=kf (x) (k> 0) is obtained from
the graph of function y=/f(x) by “stretching” it in the horizontal
direction %k times at £ > 1 and “compressing” it against the x-axis
(i. e. vertically) 1/k times at £ << 1 (see Fig. 21).

Ay
y=f(e)+b,b>0

ALY =fi @)
7 y=f)+bb<l

g z

Fig. 20

V. The graph of the function y=— f(x) is symmetrical to that
of the function y=/f(x) about the x-axis, while the graph of the
function y=f(—x) is symmetrical to that of the function y=f (x)
about the y-axis.

g
I @ \ / y=f(=)
z,

7
yfa) !

Fig. 21 Fig. 22

VI. The graph of the function y=f(|x|) is obtained from the
graph of the function y=f(x) in the following way: for x >0 the
graph of the function y=f(x) is retained, then this retained part
of the graph is reflected symmetrically about the y-axis, thus de-
termining the graph of the function for x <0 (see Fig. 22).

VII. The graph of the function y=|f(x)| is constructed from
the graph y=f(x) in the following way: the portion of the graph
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of the function y=f(x) lying above the x-axis remains unchanged,
its other portion located below the x-axis being transformed sym-
metrically about the x-axis (see Fig. 23).

VIII. The graphs of the more complicated functions

y=M (kx+a)+b
are drawn from the graph of y=f(x) ap-
plying consecutively transformations I to V.
1.5.9. Graph the function y=If(z)| /
y=3V —=2(x+2.5)—0.8

by transforming the graph y=1'x.
Solution. Sketch the graph of the function / 7 > Z
y=V x (which is the upper branch of the

¥

parabola y?*=x) (Fig. 24, a), and transform /!
it in the following sequence. . '9-7)
Sketch the graph of the function y =3 2x Fig. 23

by enlarging 3}/ 2 times the ordinates of )
the points on the graph of the function y=V x and leaving their
abscissas unchanged (see Fig. 24, b).

Then sketch the graph of the function y=23) —2x which will
be the mirror image of the preceding graph about the y-axis (see
Fig. 24, ¢).

4 Ay
y3V225-08
y 13
y’ﬁ T 2‘2
> i
: z [ ) =T R I/
o 1 @ ‘ @ 26F

By shifting the obtained graph 2.5 scale units leftward and then
0.8 unit downward draw the desired graph of the function

y=3V —2 (¥} 2.5)—0.8 (see Fig. 24, d).

1.5.10. Graph the function y=3cosx—}/ 3sinx by transforming
the cosine curve.
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Solution. Transform the given function
y=3cosx— )/ 3sinx=2 ]/’37(-'—/—”?’— C0S X — - sin x> =

2 2
=213 cos (x—}—%—) .
Thus, we have to sketch the graph of the function
y=2V 3 cos (x+ n/6),

which is the graph of the function y=2) 3cosx translated by n/6
leftward. The function has a period of 2m, hence it is sufficient to
draw its graph for —n<x<{ n
ZyVS’ (see Fig. 25).

\,

-3k

Fig. 25 Fig. 26

The graph of any function of the form y=acos x+bsin x, where
a and b are constants, is sketched in a similar way.

1.5.11. Graph the following functions:
_x+3,
(a) y= JC—I-I ’

1

(b) Yy=m—93

(©) x24+x4+1, if —1<<x<0,

={ sin%x, if 0o<x<<m,

E—=1/x4+1), I "<x<5;

(d) y=x+1/x;

() y=x*—x%

(f) y=x-+sinx;

(8) y=1/cosx;

(h) y=3sin (2x—4);

(i) y=2)V —3(x+1.5)—1.2;
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() y=|x*—2x—1};
k) y=|[x]|—1];
(1) y=cos (sinx);
(m) y=|sinx|+sinx on the interval [0,3 n];
1 at x>0,
(n) y=x*®signx, where signx= 0 at x=0,
—1 at x <.
1.5.12. The function y={f(x) is given graphically (Fig. 26).
Sketch the graphs of the following functions:
(@) y=F(x+1)
(b) y=F(x/2);
)y If X [;
(d) y=(|f (x)Iif(x))/Q
) y=1F ) /f (x).

$§ 1.6. Number Sequences. Limit of a Sequence

The number a is called the limit of a sequence x,, x,, ..., X,
... a n—oo, a= limx, if for any ¢ > 0 there exists a number

N (¢) > 0 such that the inequality |x,—a|< e holds true for all
n> N (e).

A sequence which has a finite limit is said to be convergent.

A sequence {x,} is called infinitely small if limx,=0, and infi-
nitely large if limx, = oo.

1.6.1. Given the general term of the sequence {x,}:

__sin (am/2)
n = 4

Write the first five terms of this sequence.
Solution, Putting consecutively n=1, 2, 3, 4, 5 in the general
term x,, we obtain
__sin(w/2) 1
1 1 —

Y. — sin (27/2) =0;

2 2
o= sin (f;n/Q) - _;_;
X = sin (in/?) —0;
Xy = sin (5n/2) L

5 5
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1.6.2. Knowing the first several terms of the sequence, write one

of the possible expressions for the general term:
5 10 17 2.

(a) 3813’ 18! 23’

® 13,2 +,3 1,4 5

Note. A knowledge of the first several terms of a sequence is not
sufficient to define this sequence. That is why this problem should
be understood as one of finding a certain simple inductive regula-
rity compatible with the given terms.

Solution. (a) Note that the numerator of each of the given terms
of the sequence equals the square of the number of this term plus
unity, i.e. n*+4 1, while the denominators form the arithmetic prog-
ression 3, 8, 13, 18, ... with the first term a,=3 and the com-
mon difference d=>5. Hence,

a,=a,+dn—1)=3+4+5n—1)=5n—2,
thus we have
_n*41
" bn—2°
(b) Here the general term of the sequence can be written with
the aid of two formulas: one for the terms standing in odd places,
the other for those in even places:
{ k at n=2k—1,
WE\ k1) at n=2k.

It is also possible to express the general term by one formula,
which will be more complicated, for instance,

+1 n 1 n
K=" (1= (=] 455 [T+ (=17

1.6.3. Find the first several terms of the sequence if the general
term is given by one of the following formulas:

(a) x,=sin (nmn/3);

(b) x,=2""cos nm;

©) %, =1+ 1/n)".

1.6.4. Using the definition of the limit of a sequence, prove that

(a) lim x,=1 if x,=2n—1)/2n+1),

(b) limx,=23/5 if x,=(3n*+ 1)/(5n*—1). Beginning with which
n is the inequality |x,—3/5| < 0.01 fulfilled?

Solution. (a) For any € > 0 let us try to find a natural number

N (g) such that for any natural number n > N (e) the inequality
|x,— 1| <e is fulfilled.
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For this purpose let us find the absolute value of the difference

on—1_, ’ 2
2n+-1 2n+1 |~ 2a+1°

Thus, the inequality |x,—1|<e is satisfied if 5= +1 < e, whence

n > l/e—1/,. Hence the integral part of the number 1/e—1/, may
be taken as N (g), i.e. N=E(l/e—1/,).

So, for each ¢ >0 we can find a nuinber N such that from the
inequality n > N it will follow that |x,—1| < e, which means that

2n—
Jim S =1.
(b) Let us find the absolute value of the difference |x,—3/5 |:
3n24-1 3 '_ 8
5n2_1 5| 5(Br2—1)
Let e > 0 be given. Choose n so that the inequality
8
5Em =D <&

is fulfilled.
Solving this inequality, we find

8 1 1
">5tss >3 l/

1 8+ 52
N=E (? 1/ e ) ’
we conclude that at n > N
| x,—3/5] <e,

which completes the proof.
If e=0.01, then

—E(5 )R ) =E(LV805) =
and all terms of the sequence, beginning with the 6th, are contai-
ned in the interval (3/6—0.01; 3/54-0.01).
1.6.5. Given a sequence with the general term xn=?ﬁ—i. It is
known that lim x,=1/3. Find the number of points x, lying out-

8+5e

Putting

side the ope'lz-lai:terval
1 1 1 1
L= (?—m 3+ 1—)
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Solution. The distance from the point x, to the point 1/3 is
equal to

lx __il__)___ 19 | 19
s 3| T T30 +4) | T 30n4)

Outside the interval L there will appear those terms of the se-
quence for which this distance exceeds 0.001, i.e

19
T4 — 1000 1000’

whence
18 988
I<n < ——= 703
Hence, 703 points (x,, x,, ..., X,,) are found outside the inter-
val L.

1.6.6. Prove that the number /=0 is not the limit of a sequen-
ce with the general term x,= (n*—2)/(2n2—9).

Solution. Estimate from below the absolute value of the diffe-
rence

n?— —0|= | n2—2|
2n2—9 |2n2—9 |~

At n>3 the absolute value of the difference remains greater
than the constant number !/,; hence, there exists such ¢ >0, say,
g=1/,, that the inequality

n2—

s —0|> 7

holds true for any n>3.
The obtained inequality proves that /=0 is not the limit of the
given sequence.

1.6.7. Prove that the sequence

1 1 1 2

1 1 4
v?y ?v ?’-5_’

3
ToT T

with the general term
1/n, if n=2k—1,
*n { nf(n+9), if n=2k,
has no limit.

Solution. 1t is easy to show that the points x, with odd num-
bers concentrate about the point 0, and the points x, with even
numbers, about the point 1. Hence, any neighbourhood of the point 0,
as well as any neighbourhood of the point I, contains an infinite
set of points x,. Let a be an arbitrary real number. We can always
choose such asmall e > 0 that the e-neighbourhood of the point a will
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not contain at least a certain neighbourhood of either point 0 or
point 1. Then an infinite set of numbers x, will be found outside
this neighbourhood, and that is why one cannot assert that all the
numbers x,, beginning with a certain one, will enter the e-neigh-
bourhood of the number a. This means, by definition, that the
number « is not the limit of the given sequence. But a is an arbit-
rary number, hence no number is the limit of this sequence.

1.6.8. Prove that limx,=1 if x,= (3" 1)/3".

1.6.9. Prove that limx,=2 if x,=(@2nrn+3)/(n+1). Find the
number of the term beginning with which the inequality
|(2n+3)/(n+1)—2]| <e, where ¢=0.1; 0.01; 0.001, is fulfilled,

1.6.10. Prove that the sequence
1 1 3 1 7 1
Tz—» PR T’ —4_') §7 _8—’...’
with the general term

1
- o(n+ 1)/2

1
2'2/2

1

if n is odd,

if n is even,

/
=]

|

\

has no limit.

1.6.11. Prove that at any arbitrarily large a >0 limx,=0 if

x,=a"/n!

Solution. Let a natural number & > 2a. Then at n >k
an a 14 a a a a a a a
N S B

1 \n—-k 1\~
<at ()" =@ar(5)"

Since lim (1/2)"=0 (prove it!), then at a sufficiently large n we

have: (—;T)n<  and, hence, a”/n! <e, which means that

lim (@"/n!) =0.

(2a)k

1.6.12. Test the following sequences for limits:
(@) x,=1/(2n),
1 for an even n,
(b) x”:{ 1/n for an odd n;
(c) x,,=anos '%;
() x,=n[l—(=1)"].
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1.6.13. Prove that the sequence with the general term
x,=1/nF (k> 0)

is an infinitely small sequence.
Solution. To prove that the sequence x, is infinitely small is to
prove that lim x,=0.

Take an ;r_l;i?rary e > 0. Since |x,|=1/n*, we have to solve the
inequality
1/nk < e,

whence n > v/ 1Je. Hence _N may be expressed as the integral part
of /e, i. e. N=E (}/Tf).

1.6.14. Prove that the sequences with the general terms

(a) xn=—~—(hﬂ, (b) x,,=%sin [(2n——l)%]

are infinitely small as n— oo.

1.6.15. Show that the sequence with the general term
x,=(—1)"2/(5 ¥/ 'n+1) is infinitely small as n— oo. Find a num-
ber N beginning with which the points x, belong to the interval
(—1/10, 1/10).

Solution. Take an arbitrary € >0 and estimate |x,]|:

2 2 2 1
X, = < - ==
I | 531/:;1-1 5?/n 23;/11 Vn
That is why |x,| <e a: soon as n > l/e®. Hence limx,=0, i.e.

n - o

the sequence is infinitely small. 3
We take now e=1/10. Since |x,| < 1/}/n, x, will necessarily

be smaller than 1/10 if 1%/ n < 1/10 or n > 1000. Hence N may
be taken equal to 1000. But we can obtain a more accurate result
by solving the inequality

It holds true at n > (19/5)>=3.8°=54.872. Hence N may be
taken equal to 54 £ 1000.

1.6.16. It is known that if x,=a-a,, where a, is an infinite-
simal as n-— oo, then lim x,=a. Taking advantage of this rule,

find the limits: S
3n+1 4 sin (nm/4) |

on —1)n
(a) x’l=-_——3;l——" b) x”=L2(n-——)—.
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Solution. (a) x,,=ii—1-—§i"¢t/i)=3+an, where o, =

an infinitesimal as n— oo, hence lim x,=3.

n—-» o

1.6.17. Prove that lim /n=1.

n -+ o

sin (nrm/4)

T 1S

Solution. Let us prove that the variable }/n can be represented
as the sum 1+a,, where o, is an infinitesimal as n— oo.

Let us put y/n=1+a, Raising to the nth power we obtain
n=(1+a,)=1+na,+——5— oc,,+ . +ap,

n(n

wherefrom we arrive at the conclusion that for any n> 1 the fol-
lowing inequality holds true:
n(n-—l)

n>l+ an

(since all the terms on the right are non-negative). Transposing the
unity to the left and reducing the inequality by n—1 we obtain

1> a2,

whence it follows that 2/n> a2 or V'2n>a,>0. Since
lim V'2/n=0, lim a, also equals zero, i. e. a, is an infinitesimal.

n - o

Hence it follows that

lim y/n=1.

n - ®

1.6.18. Prove that the sequence with the general term
3,
x =31/ "

is infinitely large as n— oo.
Solution. Let us take an arbitrary positive number M and solve
the inequality

s,
3V > M.
Taking the logarithm, we obtain
v/ n>log, M, n> (log, M)*.

I we now take N =E (log; M)?, then for all n > N the inequa-
lity |x,| > M will be fulfilled, which means that the sequence is
infinitely large.

1.6.19. Prove that
lim l'7a—= 1 (a>0).

n-» o
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§ 1.7. Evaluation of Limits of Sequences

If the sequences {x,} and {y,} are convergent, then
(1) lim (x, + y,) =lim x, + lim y,,;

(2) lim (x,y,) = lim x, lim y,,;

@) lim ;‘"— Jim 2 (tim g, #0).

If x, <y, then "lim x, <limy,.

1.7.1. Find lim x, if

n-» o

3n2+45n-+4 __5n34-2n2—3n4-7
@ % ="17— O =g
4 —4n+3 Bt 42,
© *m=gmrara @ %=—gaar7
142
(e) xn=.+_—l;l?__+_n.
e
Solution. (a) Xy =—g—,
]
nllm (34-5/n+4/n?)
lim x,=">2 =3.
Ty

(d) Recall that

124904324, ., +n2=%ﬂ.

Hence
3 1
_n(th@ntl)  2n343n2+n 24t
6(Gni+nt1) 6Gn3tn+ly 30+ 6,_’_/13'
lim x,=1/15.
n-»
1.7.2. Find lim x,, if
n-» o
([ 3nt4n— . . 2n34-2n2 41 4
(@) x, <4n2+2n+7) p () x"_<4n3—}-7n3+3n—|—4) ’
(C) xn_ 1/5,1’ (d) xn= VF’
(€) x,=y/n% (f) x,= ¢/6n+3.
: 3n2+4+n—21\3
Solution. (a) llm <m_—7) =

i nz—l-n—) 3n2—|—n—2> 3n+n—21\ _
T (4n2+2n+7 <4n2+2n+7 <4n‘*+2n+7)_

34-1/n—2/n2\3 [ 3\3 27
(,}L“; mﬁ) —(T) =5
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(c) In solving this example, and also the rest of the examples
of Problem 1.7.2, take advantage of the following equalities (see
Problems 1.6.17 and 1.6.19):

lim /n=1 and lim }/a=1. (1)

We have
lim x,= lim ¥/5n= lim /5 lim /n,

n- o n - o n-—»>® n-—> o

but from (1) it follows that lim 3/5=1 and lim y/n=1; hence
limx,=1-1=1.

1.7.3. Find
1 —5n?
K2n2+3+ 511 )
Solution. Summing the fractions, we obtain

Y = 2n3—13n2+43
B 10n3+2n2+15n+3°

Whence
2n3—13n24-3 1

lim x,= lim =—.
il no o 103122+ 15013 5

Note. 1f we put

I

n=o2r3 T Bagl
then the limit of their sum lim(y,-+2,) = 1/5, though each of the
summands is an infinitely large quantity. Thus, from the conver-

gence of a sum of sequences it does not, generally speaking, follow
that the summands converge too.

1.7.4. Find lim x, if

a) x,=V2n+3—) n—T,

b) x,=Vnrrntl—Vnr—n+l,
() x,=n2(n—V n*+1);

(d) x,=y/ n*—nd+tn;
V?T"an )
Vwin—Vn

(f) x,=y (n+1p— /(n—l)%
1 —243—445—6+4... —
&) = Virri+Vinr—1

T B I
) =15ttt +oarn-

(e) x,
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Sotution. (a) x,=V n(V2+3/n—V 1—1/n)— + oo as n — oo,
since the second multiplier has a positive limit.

nz(n——Vn‘z—I—l)__ —n?
T =

(©) %= Vw1
=—n'll*l—>—00 as n— oo,
+‘/l+n—2
(d) x,= i =

(n2—n3)¥3—n f/nz_n3+n2
1

= -]_.__1 7 i.._l 1/3_}_1.
It means, x,— 1/3. <n > <’l )

(e) Factoring out the terms of the highest power in the numera-
tor and denominator, we have:

varieve a(Y st )/ 3
Sy e (Vi V)
VisatV
Vi3

=nt/ — -+ 00 as n— oo.

1.7.5. Find limx, if

n-w

(a) x V. (b) x _yrtan .
o Vari+Va oV s
——y 1 3
©) x,=y T—n*+n; (d) x,,=5-lcosn3——é;z-:-:—i-;

__2n n+1 n  n(—lyp
(€) *n=5m 1S 51— T—gn 1’

I gt gt
b gtgto g

(f) Xp=

§ 1.8. Testing Sequences for Convergence

Bolzano-Weierstrass’ theorem. A monotonic bounded sequence has
a finite limit.
Theorem on passing to the limit in inequalities. If x,<Cy,<<z,
and lim x,= lim 2z,=c¢, then limy,=c too (¢ is a number,
n—> o n-—-» x n - o

4+ oo or — eo but not oo).
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1.8.1. Prove that the sequence with the general term x,=

= (2n—1)/(3n+41) is an increasing one.
Solution. We have to prove that x,., >x, for any n, ie. to

prove that
2n+1  2n—1

3ntr4 >3n—|—l :
The latter inequality is equivalent to the obvious inequality
6n2+5n-+4+1 > 6n®+5n—4.

Hence, x,., > x,.
1.8.2. Given a sequence with the general term
_ 107
x
n="al
Prove that this sequence decreases at n > 10.

Solution.
10n+1 107 10 10

Xnt1 =nFnr e Ap1 - Xn AFl
Since i <1 at n>10, then x,,, <«x, beginning with this
number, Whlch means that the sequence decreases at n > 10.
1.8.3. Test the following sequences for boundedness:
5n2

(a) xn=nz__i_"3—;
(b) yn=(—1 +1

(c) z,=ncosnn.
Solutzon (a) The sequence {x,} is bounded, since it is obvious that

0< 3<5 for all n.
(b) The sequence {y,} is bounded:

2 . 2
|9a = (=1 |- i3 Isinn| < 77 < 2.

(c) The sequence {z,} is not bounded, since

|z,|=|ncosnn|=n.
1.8.4. Prove that the sequence
X0 . __*1 . X . _ _*n—1
xl—a'i‘xo’ xz—a+x1’ xs—a_|_x2’ e xn—a+xn_"

(@>1, x, > 0) converges.
Solution. Let us prove that this sequence is monotonic and

bounded. Firstly, x, <x,_, as

_*n-1
xn a+x"_ <xn 1°
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Hence, the given sequence is a decreasing one. Secondly, all its
terms are positive (by condition a >0 and x, > 0), which means
that the sequence is bounded below. Thus, the given sequence is
monotonic and bounded, hence it has a limit.

1.8.5. Prove that the sequence with the general term

1 1 1 1
=sriteErrteErr T e

X,

. L 11 I o
(e m=gps =5yt 5o =gy s by o)
converges.

Solution. The sequence {x,} increases, since x,,,, =x,+ 1/(5""1--1)
and, hence, x,,, > x,. Besides, it is bounded above, since 1/(5"+ 1) <
< 1/b" at any n and

I 1 i I
Yw=sritErTtegr T - tTerr <
P11 1 I
<grtmEtmT.- 7——T3F—=7@—ﬁ)<7-
Hence, the sequence converges.

1.8.6. Taking advantage of the theorem on the existence of a
limit of a monotonic bounded sequence, prove that the following
sequences are convergent:

n?—1

(a) x,= nz

(b) Xp=2-4or+ 3.+

n!

1.8.7. Prove that the following sequences converge and find their
limits:

@) 4, =V x,=V21V 3
x3=1/2+V2+l/'2"; x,,=1/2+V2—I----+V§;

n radicals
n
(b) xn=(n+2)! ’
__E(w).
(C) Xp= n ’

(d) the sequence of successive decimal approximations 1; 1.4;
1.41; 1.414; ... of the irrational number } 2;

(e) x,=nl/n"

Solution. (a) It is obvious that x <x, <x,<...<x,<
< Xppy < ..., i.e. the sequence is increasing. It now remains to
prove that it is bounded.
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We have x,=V2+4x, , n=2, 3, ... Since x,=V2<2
X, =V24x <V2+2=2 x,=V24x,<V2+2=2, .... Let it
be proved that x,_ , < 2. Then x,=V2+x,_, <<V 2+2=2. Thus,
with the aid of mathematical induction we have proved that x, < 2,

i.e. the sequence is bounded. Hence, it has a finite limit. Let us
find it. Denote

lim x,=y.

n—-» o
Then, x,=V 2+ x,_,; raising to the second power, we obtain

=24X,_q
Passing to the limit, we can rewrite this equality as follows

lim x2 = lim (24 x,_,), or y*=2-}+y.

n - x n- o

The roots of the obtained quadratic equation are:
=2 y,=—L.

The negative root does not suit here, since x,>0. Hence, lim x,=y,=2.

1 - ®

(c) We have ny—1 < E (ny) << ny or y— < E(ny)<y But the

sequernces {y—%} and {y} converge, their limit being y, that is
why limx, =y.
n-—-» o
(d) This sequence is non-decreasing, since each following term
X,4; is obtained from the preceding one x, by adding one more
significant digit to the decimal fraction. The sequence is bounded
above, say, by the number 1.5. Hence, the sequence converges, its
limit being V2.
(e) The sequence decreases monotonically. Indeed,
(n+ 1! n! n! nn nn

R L R | NV

Since ——— (n—|—1)" <1, x,,, <X,

Then, since x, > 0, the sequence is bounded below, hence lim x,

n-«

exists. Let us denote it /. Obviously, /= lim x,>0. Now let us
n- o
show that [=0. Indeed,

() (1 ) e 2
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Hence, (T-’il—n_l)ﬁ < % and x,,, < —;-x,,. Passing over to the limit,
we obtain
<5l
which, together with />0, brings us to the conclusion:
1=0.

1.8.8. Find the limits of the sequences with the following gene-
ral terms:

X = n . 7 = n .

T Vera' TP Vergll

1 1 1
In =Y + Vn2+2+"' + Vnitn '

Solution. Let us prove that lim x,=1. Indeed,
Ix_._”:‘_”__ll= n—Vnita | _

— n < 1
T Vritnalnt Vartn) on’
We can prove similarly that

lim z,=1.
Then, e
Yn < Vn:—f-l + Vn:-l—l et Vn;—{—l = Vn":-l-l = w
On the other hand, '
yn>Vn;+n+Vn:+n+“'+ ' L

Vntn - Vietn

n

Thus,
Xy < Yp< 2, limx,=lim z,=1

and according to the theorem on passing to the limit in inequalities
lim y,=1.
n-> o
1.8.9. Using the theorem on passing to the limit in inequalities
prove -
lim ya=1 (a>0).

n - w
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1.8.10. Prove the existence of the limit of the sequence y,=a?/?"
(a>1) and calculate it.

1.8.11. Taking advantage of the theorem on the limit of a
monotonic sequence, prove the existence of a finite limit of the

sequence
1

n? °

B Tt

1.8.12. Taking advantage of the theorem on passing to the limit
in inequalities, prove that

lim x,=1if x,=2n () n2+1—n).

1.8.13. Prove that the sequence
x=Va x2::1/a+VE;
x3=]/a+Va—|—VE{; e x,,———]/a—[-Va—l—...—H/a_

n radicals

(a>0)
has the limit 6=(/4a+ 1+ 1)/2.

1.8.14. Prove that the sequence with the general term

1 1 1
x"_s_ﬂ'i"ém"l'" '+m
has a finite limit.

1.8.15. Prove that a sequence of lengths of perimeters of regular
27-gons inscribed in a circle tends to a limit (called the length of
circumference).

§ 1.9. The Limit of a Function

A point a on the real axis is called the limit point of a set X
if any neighbourhood of the point a contains points belonging to X
which are different from a (a may be either a proper or an impro-
per point).

Let the point a be the limit point of the domain of definition
X of the function f(x). The number A is called the limit of the
function f(x) as x—a, A= lim f(x), if for any neighbourhood V

X —>a
of the number A there exists a neighbourhood u of the number a
such that for all x€ X lying in u, f(x)€V (the definition of the
limit of a function after Cauchy). The number A may be either
finite or infinite. In particular, if the numbers A and a are finite
we obtain the following definition.
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A number A is called the limit of a function f(x) as x —a,
A= lim f(x), if for any & > 0 there exists a number 6 (e) > 0 such

X —>a
that for all x satisfying the inequality 0 <|x—a| <6 and belon-
ging to the domain of definition of the function f(x) the inequality
|f(x)—Aj<e holds true (the “e-8 definition”).
If a= 4+ oo, the definition is as follows. A number A is called
the limit of a function f(x) as x — 400, A= lim f(x), if for any

X > +®
e > 0 there exists a number M (e) > 0 such that for all x satisfying
the inequality x > M (¢) and belonging to the domain of definition
of the function f(x) the inequality |f(x)— A|<e holds true (the
“g-M definition”).
The notation lim f(x)=oco means that lim |f(x)|= + co. The

rest of the casesx ;rz, considered similarly. e
The definition of the limit of a function after Heine. The nota-
tion lim f(x)=A means that for any sequence of values of x con-

X —>a

verging to the number a
Xy Xgy vovy Xpy ooe

(belonging to the domain of definition of the function and differing
from a) the corresponding sequence of values of y

U=F(x); Yo=F(xa)s -3 Yu=1(%n), ..
has a limit, which is the number A.

1.9.1. Taking advantage of the definition of the limit after
Heine (i.e. in terms of sequences) and of the theorems on the limits
of sequences, prove that
3x+1 |

lim =7

Solution. Let us consider any sequence x,, x,, ... satisfying
the following two conditions: (1) the numbers x,, x,, ... belong
to the domain of definition of the function f(x)=(3x+1)/(5x-+4)
(i.e. x,=—4/5); (2) the sequence {x,} converges to the number 2,
ie. lim x,=2.

To the sequence {x,} there corresponds the sequence of values
of the function

3xi+1 ., 3x+41 .
5xi+4 " bx,+4" "7

proceeding from the theorem on the limits (§ 1.7),

i — qi Fat 1l lim@x,4+1)  6+1 1
r}]-{nmf(x")_ ,}l-l.nm 5x,+4 lim(5x,+4)  10+4 2°
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Thus, independently of the choice of a sequence {x,} which
converges to the number 2 (x, 5= —4/5), the corresponding sequences
of values of the function f(x,) converge to the number 1/2, which,
according to the definition of the limit of a function, means that

3x+41 1
xlin; 5x+4 2 °

Note. The definition of the limit after Heine is conveniently

applied when we have to prove that a function f(x) has no limit.

For this it is sufficient to show that there exist two sequences {x,}

and {x,} such that lnn Xp= hm xp,=a, but the corresponding

sequences {f (x,)} and {f(x,,} do not have identical limits.
1.9.2. Prove that the following limits do not exist:
(a) lim sin ;— (b) 11m 2%, (c) lim sin x.
x -1 X > o

Solution. (a) Choose two sequences

x—l—}——; and x,= n=1,2, ...),

= H'(4n-|-1)n
for which
lim x,= lim x,=1.

n - o n - o

The corresponding sequences of values of the function are:

. 1 .
f(x,,)=smm)_—]=smnn=0

and
’ . 1 .4 1 .
) =Sin gy =i g w=sin (245 ) =

Hence,

liml f(x,)=0 and 'lim fx)=1,

X, =+
n xn-»l

i.e. the sequences {f(x,)} and {f(x,)} have different limits, whence

it follows that lim sm-—1 does not exist.
x> 1
(c) Choose two sequences Xp=nn and x,=2nn+n/2 (n=1,
2, ...), for which lim x, = lim " X, = o0o. Since
n - o n - o

lim sinx,= lim sinnn=0,
n - o n - ®
and
lim sinx, = 11m sin (2nn +n/2) =1,

n - o

lim sin x does not exist.

X - &
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Note. The above examples show that one cannot draw the con-
clusion about the existence of the limit of a function proceeding
from the sequence of values of x of a particular form (for example,
proceeding from x,=1+42/((4n+1)xn) in the item (a) of this prob-
lem), but it is necessary to consider an arbitrary sequence x,,
Xyy ++ey Xn, ... having a given limit.

1.9.3. Proceeding from the definition of the limit of a function
after Cauchy (i.e. in the terms of “e-8”; “e-M”, etc.), prove that

(a) lim (3x—8)= —5;
x> 1

. 5. 1 5
(b) lim 3§J+rg=§‘
. 1
(©) Jim fr—gr = + oo
(d) lim log,x=00 (a>1);
(e) lim arctanx=mn/2;
(f) lim sinx=1/2.
X -+ /6

Solution. (a) According to the “e-8” definition we are to prove
that for any & > 0 there exists § > 0 such that from the inequality
|x—1|< 6 it follows that |f(x)—(—5)|=|f(x)+5|<e.

In other words, it is necessary to solve the inequality

[3x—8+5|=3|x—1]|<e.
The latter inequality shows that the required inequality |f(x)+5]<Ce
is fulfilled as soon as |x—1| < ¢/3=4§. Hence, lim (3x—8)= —5.

x -1
(b) According to the “e-M” definition of the limit one has to
show that for any e >0 it is possible to find a number M >0
such that for all x > M the inequality

5x+1 b
3x—+—9_—§|<B *)

will be fulfilled.
Transforming this inequality, we obtain

5¢+1 5 14

W9 3| T Taxyo] <

Since x >0, it remains to solve the inequality

14
g <&
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whence
14—9¢e |
x> 3e
hence M=l43_98.
£
Thus, for €¢>0 we have found M=14;998 such that for all

values of x > M the inequality (*) is fulfilled, and this means that

. 541 5
lim
Xt B9

14—0.09 2
—3 =463 3

(c) We have to prove that for any K > 0 there exists 6§ >0
such that from the inequality

[x—1]< 86

there always follows the inequality

Let, for example, e=0.01; then M=

I
=a=p > K

‘ (I—x)?
Let us choose an arbitrary number K > 0 and solve the inequality

1
= > K, (**)

whence
[1—x|<—= V" (K > 0).

Thus, if we put 6= then the inequality (**) holds true as

1
VK’
soon as |x—1| < 8, which means that lim = x)2 = 4 oo.

x -1

(d) We have to prove that for any K > 0 there exists M >0
such that from the inequality x > M there always follows the ine-
quality log,x > K. Let us choose an arbitrary number K >0 and
consider the inequality log,x > K. If we put aK=M, then at
x> M the inequality log, x > K holds true. Hence,

lim log,x= -+ oo.

X —>+®
1.9.4. Prove that lim cosx does not exist.

1.9.5. Using the se(;u_)e;ces of the roots of the equations sin (1/x)=1
and sin(1/x)= —1, show that the function f(x)=sin(l/x) has no
limit as x— 0.
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1.9.

6. Proceeding from Cauchy’s definition of the limit of a

function prove that:

(a)
(©)

(€)
()

x—1

lim (3x—2)=1; (b) lim F=—=2;
x> 1 x =1 x—1

lim sinx =0; (d) lim cosx=1;

x -0 x>0

lim X =2;

ot dX+2 37

lim a*= 400 (a > 1)

xX—-»> +o®

. sinx
lim —=0.
X

@ lim

§ 1.10. Calculation of Limits of Functions

[. If the limits limu(x) and limov(x) exist, then the following

x->a x—+>a

theorems hold true:

(M
(2)
©)
I1.

main
I11.

lim [u (x) 4 v (x)] =limu (x) + lim v (x);
lim [u (x)-v(x)] =limu (x)-limv (x);

‘() lim u (x)
lim (= T (ime(9#0.
xX—->a
For all main elementary functions at any point of their do-
of definition the equality llmf(x) f(limx) f (@) holds true.

If for all values of x in a certam nelghbourhood of a point a

(except for, perhaps, x=a) the functions f(x) and ¢ (x) are equal
and one of them has a limit as x approaches a, then the other one
has the same limit.

IV.

(1)
@)

3)
(4)
©)

The following limits are frequently used:

lim S0%_ 1.
x-0
lim (14 1/x)*=lim(1 +a)l/*=e=2.71828.. .;
X > o a-0
lim %—’—Q=logae (@>0; as=1);
x-0
lim 4% _ .
x-0 X ’
“—l_lna (@a>0).

x-+0
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1.10.1. Find the limits:

4x5+9x+7 x34-3x2—9x —2

( ) ll 13x6+x3__|_1 ) (b) il_rj]2 3 _x—6 ’
l x+l .
(© xl-.n_l V6x3+3—]—3x (d)
@) m%M_‘; () llm'/lo ——
x> x->2
Vx+7 3 sz—— . X—
) li _X=9 .
@ /x+6 2,/3x— ( ilﬂ [log“ Vx+6—3]’
l —)C-l-l. x+8— 8x
O iy 0 lim s

Solution. (a) Since there exist limits of the numerator and deno-
minator and the limit of the denominator is different from zero,
we can use the theorem on the limit of a quotient:

5
lim 4x*+9x 47 lem (e +95+-1) e

x> 1348 L 4311 llm] @Bx5Fx3+1)" 34+14+1
x>

(b) The above theorem cannot be directly used here, since the
limit of the denominator equals zero as x— 2. Here the limit of
the numerator also equals zero as x—2. Hence, we have the

indeterminate form %~ For x#2 we have

B43x2—9x—2 (x—2) (x24+5x41)  x24-5x4-1
B—x—6 = (x—2)(x?+2x+3) x2f2+3°

Thus, in any domain which does not contain the point x=2 the
functions

5432 _0x—2 P 45x1
Foo =252 and 9 (9= rorrs

are equal; herce, their limits are also equal. The limit of the
function ¢ (x) is found directly:

x24+5x+1 15,
llm (p(x)—llm -XJ—T—I—:; _l
hence,

x3+3x2—-9x—2 15

lim f(x)_h - e

x—2
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(¢) Just as in (b), we remove the indeterminate form % by
transforming

lim XL g @D (VEET3—30)
xom1 VX2 L3432  xo-1 3—3x2
—lim V6x2+3——3x=l.
x-»=1 3(l—x)

1.10.2. Find the limits:
X3 x2 .
(a) l‘m (3 T4 3x—|—2>’
(b) 11m (V' 9x2 +1—3x);
x>+
(©) lim 2V x+3 1/;:+5|/x;
x-to  V3x—2+4 l/?x—3
(d) lim (V 2x*—3—5x);

) lim x(V x*+1— x);

X =+ o

Vo213 . l/.2x2—|—3.

O lin S end Im S
(g) lim 52%/(x+3),

X—»>

3 2

Solution. (a) llm <3x_2x_71 3;—_'_2)

Here we have the mdetermmate form oo —oo; let us subtract the
fractions

lim (g — gy ) = lim gt =

oo \3X2—4  3x4-2 fo o X3 4-6x2—12x—8
ST 2+4/x _2
_xlf,nl 9+6/x—12/x2—8/x3 " 9 °

Note. We see that in such examples the limit is equal to the
ratio of the coefficients at the superior power of x (provided the
polynomials are of the same degree).

(b) lim WOEI=3)_ gy L
x>+ x>+ V9x2+l+3x
(c) In handlmg such examples bear in mind that the function
f(x)="p.(x), where p,(x) is a polynomial of degree n, tending
to infinity in the same way as the function 7/ x". This allows us

to single out the superior power of x and divide both the nume-
rator and denominator by this power of x. In the given example
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the divisor is J/ x; then we obtain:
. 2V k43 x5 % ) 2+3/5/ T8/
lim 3 = lim 5 =
xot+o )/ 3x—2+4/2%—3 x>t |/ 3—2/x+ 3/ E/x—12/x7 9/
2

= —cV_S_’ .
(d) Since the sum of two positive infinitely large quantities is
also an infinitely large quantity, then

lim () 2x*—3—5x)= lim |V 2x* =3+ (—5x)| = + .

X—>—-® X > -

(f) At x>0 we have V x*=vx, therefore

lim V2O i xVIFSE_ V2
ot X(E+2/x) totreo ¥@E+2/%) 4

At x < 0 we have }/x*=—x and, hence,

lim Y2@E3®) o —xV2i3x V3
o TX@F2M) e xGFo® o Td -

Note. From this it follows, incidentally, that lim KfL—i-—;:; does
X—=> o

not exist.
lim 2x/(x+3)
(g) lim52%/(x+3) = pxr>w =52 =25,
X—> ®
1.10.3. Find the limits:
(a) llmL (b) lim N

X1 /26+x 3 »_11/ 17—

l/x l/l—{-x——

1i L .

(c) xifl_1]1 s ho (k positive in
teger)

e) lim sin (x—m/6) | cos X .

() x> 1/6 V 3—2cosx’ (f) xl.l.n/g /(l sin x)? ’

. 2sin? x+sinx—1
() xl_frr?/s 2sin2x—3sinx+1°

Solution (method of substitution). (a) Let us put 26+ x=2z2
Then x=2*—26 and z— 3 as x— 1; hence

2x—2 223 — 54 . 2(2—3)(22+4-32+9)
1 = llm =
tl-lonl /26—}—)6 3 2-»3 2—3 23 z2—3
=1im 2 (z*+ 324 9) = 54.
23
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(d) Let us put 1 +x=2% then x=2#—1 and z—1 as x— 0.
Hence,

VT+x—1
lim —%— lim 7—11 k (see Problem 1.10.1 (d)).
x-0 z2-1

() Let us put x—m/6=2 then x=z+4n/6 and z2—0 as
x—1/6. On substituting we obtain

lim sin (x— m/6) = lim sin z
x»6 V3—2c08Xx 2.0 V3—2cos (z+ n/6)
— lim in z = lim 2 sin (2/2) cos (2/2) —
so0V 3— V 3cos z+sinz  2-02V 3sin?(2/2)+2sin (2/2) cos (2/2)

= lim €os (2/2)
z-0 V 3 sin(2/2) + cos (2/2)

1.10.4. Find the limits:

(a) hml—cosx’ (b) lim tanx—s—smx;
x>0 x—-0 X
(©) lim cos (nx/2)
x-1 —X
Solution. (a) 11m cosx__ lim 282 @/2) _ 1 i, (s“‘ WQ))”______
x>0 x—-0 2 x=0 x/2 2
(b) lim tan x—smx=1im sinx(l—cosx)=
x>0 x3 ta0  COSX-x3
lim 1 smx l—cosx__l_.
T LL0c0sxx 2 2!

(c) Let us put 1—x==z. Then x=1—2z and z—0 as x— 1.

Hence,
cosix cos (£—12> sinnz
lim —2 —lim —\2 2 /iy — 2

x> 1 1— 2= 0 2 20

=
=3

Note. For a simpler method of solving similar problems see § 1.12.
1.10.5. Find the limits:

(a) lim (14 1/x)%; (b) lim (1 4 x)!/@n;
X > ® x-0
© lim ()5 () lim (14 k/xy™;
. In(l ax __ |
@ lim S 0 lim e

In(a+x)—Ina (h) llm —e—X%

(g) lim ——_—_; sin x )

(i) lim In x— l

X—+e
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Solution. (a) lim(l —}—%>7x=lim [(1 +'7>x

X - ® X - ®

. In(l4x) In (1 +x) X
(e)ll-{no -1 [ ¥ .3"—']

n3’
(i) Put x/e—1=2; then x-=e(z+1); z— 0 as x—e. On substi-
tuting we obtain

= lim

x>0

lim In x— In (x/e)

I . In (1 1
_111 =Ly nd+a_ 1
x-e *TE€ X > e(x/e—1) € 2.0 z e

1.10.6. Find

Solution. lim <l + $>x= lim [(l —}-—):3))‘2] l/x=e" =1.

1.10.7. Find the limits:
(a) lim <ﬂ>(1-"1)/41-x);

24+ x
. x242x—1 \(2x+ 1)/ (x=1)
(b) lim (57— ) :

Solution. (a) Denote:
f(x)= (1+x)/(2+x):

P (x)— Vx ;
l+x 2
li y=li =
lim 7 (x) xi’?2+ 3
I _lim =V _ L
x-{rll ¢ ()C) xl-»nll l—x 2
But at finite limits limf(x)=A >0, lim¢ (x) =B the following
ad X
relation holds true: e ‘
lim @ (x) ln [ (x)
]lm [f(x)](p(x)_ex—»a _eBlnAzAB_

Hence,

. I+x\-VR/a-n _ (2\V2_ l/z—
L‘f}(2+x> —<3) AR

Note. If in handling examples of the form lim [f (x)]*® it turns
x—a

out that limf(x)=1 and limg(x)=o0, then the following

X—a X->a

33148
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transformation may be recommended:

lim [f (x)]* ) = 11 n 4 [f (o) —1]jr = =

X—>a

—llm{[l—f—(f(x __1)}1,(f(x> Dle @ 1f ) =1] — gx»
-a

1.10.8. Find the limits:

2x2 - 3\ 8x2 +3 | 4 tan x l/>|nx.
(@) llm (2 —|—5> » () llm( l—|—%1nx> ’

(c) llm (1 4 sin mx)cot =,
x> 1
sinx

(d) lim (—.—)mx—a) (a = kn, with k an integer).

sina

Solution. (a) Let us denote:

F=2120 ¢ (n=8x+3;

lim [ (x) __llm 203 =1

Yoo 2% 25
lim ¢ (x) = llm (8x2—i—3) =

X—> o X—> ®

Use the formula (*):
i 8x2+3 im @ (x) [f (x)=1]
lim (2x +3\ T e

tom \2X24- 05/ ;
_ 2x*4-3 _ 2 .
Fo)—l=gos—1=—go7s
2 (8x2 43
1111;([) ) [f(x)—1] = —11m —%}—C’:—% =—8.
Therefore
o (2x2- 3\8x43
lim (5ig) e
1.10.9. The function f(x) is given with the aid of the limit
x|
f(x)= llm et

Investigate this function and graph it.
Solution. Consider three cases:
(I) |x| > 1. Since in this case lim x** = oo, then

n->w
EERTP Rl VS
[ (x) = }Lﬂl T = L

(2) |x| < 1. In this case limx**=0; therefore f(x)=—1I.

n-®

lim fP(x)lf (x)~1]

(*)
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(3) x ==+1. In this case x> =1 at any n, and therefore f(x)=0.
Thus, the function under consideration can be written in the
following way:
1if x| >1
fy={—1if |[x| <1

0 if x==+1

or, briefly, f(x)=sign(|x|—1) (see Problem 1.5.11 (n)).
The graph of this function is shown in Fig. 27.

1.10.10. The population of a cou- y
ntry increases by 2% per year. — -1 e
By how many times does it increase { :
in a century? | |

Solution. 1f we denote the ini- ! {
tial number of inhabitants of a 7t 1 1 z
given country as A, then after a } t
year the total population will amo- | {
unt to { - >

A / |
A+W)'2:(1+5_0>A' Fig. 27

After two years the population will amount to A l—|-5i0 *. After

100 years it will reach the total of A(l+5—]0>100, i.e. it will

have increased [(1 -I—E%))s‘,]z times. Taking into account that
lim (l —|——,l7>n =e, we can approximately consider that (l + 51_0>60 xe.

n—-.

Hence, after 100 years the population of the country will have
increased e* &~ 7.39 times.

Of course, this estimation is very approximate, but it gives an
idea as to the order of the increase in the population; (the quan-

tity \/1 +515>m=7.245 to within three decimal places).

1.10.11. Find the limits:
o fin

(o) lim SEESS

© lim ==

. 2x2 —5x -+ 4
d ]1m o
(d) Yo OX*—2x—3"

3*
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(e) lim VeF+l1—=Vx—1)
|~2X 1L 9—x?
M lxl—l;l:c<'?/l+8x3 -2 >

1.10.12. Find the limits:

. Vxyri—2, sin (1—x) |
(@) lim —goe— (b) lim ===
¢) lim —i”.,—i“.—, d) lim tan2x tan (z/4 — x);
2
qon I — 2R x->1/4
© li tan3 x—3 tan x

1 —_—
X*E}S cos (x4 m/6)

1.10.13. Find the limits:

(a) lim (14 4/x)**3 (b) llme xﬂl
- ® x->0
x. a?x—1 .
(c) lim — (d) lim (1 + 3 tan? x)ct* x;
x-0 x-0
i i tanz 2x. [\x
(e) xl-1>534(5m 2x) ;o (D llm \2 FE
(g) liin (tanx)tan 2% (h) 11m (smx)‘a" x;
x>/ 2 x-7/2
o1 3x2 4 2x 4 1 \(Bx+1)/(3x+2)
Q) lim (P ) ’
N i (L3N =VR/0 -0,
) fim ()7
(k) lim 2=
x -0
1.10.14. Find the limits:
. arccos(l—x) . . Intanx |
(@) 11_{2 Vx () x£2}4 I—cotx’

. .
(c) illrgm In (1 4+ asin x).

§ 1.11. [nfinitesimal and Infinite Functions.
Their Definition and Comparison

The function a(x) is called infinitesimal as x —a or as x — oo
if lima(x)=0 or lima (x)=0.

"l{hg function /‘(x):)oo is called infinite as x—a or as x — oo If
limf (x) = oo or lim f (x) =

xX—a X—> ®
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Alquantity inverse to an infinite quantity is called an infinite-
simal.

Infinitesimal functions possess the following properties:

(1) The sum and the product of any definite number of infinite-
simal functions as x — a are also infinitesimals as x — a.

(2) The product of an infinitesimal function by a bounded function
is an infinitesimal.

Comparison of Infinitesimals. Let the functions o (x) and B (x) be
infinitesimal as x — a. If

lima(x) =

where ¢ is a certain finite number different from zero, then the
functions a (x) and P (x) are called infinitesimals of the same order.
If c=1, then the functions a(x) and B (x) are called equivalent;
notation: « (x) ~ B (x).

If c=0, then the function «(x) is called an infinitesimal of a
higher order relative to B (x), which is written thus: a (x) =0 (f (x)),
and P (x) is called an infinitesimal of a lower order with respect
to a (x).

If limf%=c, where 0 < |c| <+ oo, then the function o (x)

X->a
is called an infinitesimal of the nth order as compared with the
function B (x). The concept of infinite functions of various orders
is introduced similarly.

¢,

1.11.1. Prove that the functions
L 2x—4 _
(a) f(,k)———x2+5 as x — 2,
b)) f(x)=(x—1)? sin3x—_]—l as x — | are infinitesimals.
Solution. (a) It is sufficient to find the limit
. . 2x—4
=i =0
(b) Firstly, the function ¢ (x)=(x—1)* is infinitesimal as x — 1;
indeed, lim(x—1)2=0. Secondly, the function

x-1

w(x)=sin3—'; x= 1,

x—1
is bounded:
lsin3 x—-l~_1 ‘ < L.
Hence, the given function f(x) represents the product of the
bounded function ¥ (x) by the infinitesimal ¢ (x), which means that
f(x) is an infinitesimal function as x — 1.
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1.11.2. Prove that the functions
—12

(a) f(x )- 22+7 as x—4;

(b) f(x)= s'zx as X — 00
are infinitesimal.

1.11.3. Find

lim xsin(1/x).
x>0

Solution. Since x is an infinitesimal as x — 0 and the function
sin (1/x) is bounded, the product xsin(l/x) is an infinitesimal, which
means that lim xsin (1/x)=0.

x>0

1.11.4. Compare the following infinitesimal functions (as x — 0)
with the infinitesimal ¢ (x)=x:

(a) f,(x)=tanx® (b) f,(x)=} sin*x;
(© f,(x)=V9+x—3.
Solution. (a) We have

tan
= lim —; " lim x2 = 0.

x>0 x>0

lim
x>0 x->0

Hence, tan x® is an infinitesimal of a higher order relative to x.

tan x3 . " tan x3
= li = x2]

(b) We have
3, 53 o 3
lim ¥V 5% — lim sin?x 1|
x>0 x X0 2 3/ | T
X

Hence, }/sin%x is an infinitesimal of a lower order as compared
with x.
(c) We have
litn L?j__i—_:;_ lim _—l.__ L.
x>0 X x->0 V9-|-—x—|—3 6

Hence, the infinitesimals )/ 9+x—3 and x are of the same order.

1.11.5. Determine the order of smallness of the quantity § with
respect to the infinitesimal a.
(a) p=cosa—cos2a; (b) p=tana—sina.

Solution. (a) P==cosa—cos2a=2sin 3 asin &

2 2 °
Whence
lim _[3?= lim 2 sin (305/22 sin (at/2) _?_
a-0 a -0 @ 2
Hence, P is an infinitesimal of the same order as a2, i.e. of the

second one with respect to a.
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1.11.6. Assuming x — oo, compare the following infinitely large
quantities:
@) f(x)=3x*+2x+5 and ¢(x) =2x>+2x—1;
(b) f(x)=2x*+3x and @ (x)=(x+2)%
© f(x) =} xFa and ¢ (x)=} x.
Solution. (a) The infinite function 3x*+42x+45 is of a lower order
as compared with the infinite function 2x®++ 2x—1, since
. 3x24-2x+5 . 3/x+2/x*+5/x%
li 2x3~{—2x-——l_——xh_,mw ST T = 0

1.11.7. Prove that the infinitesimals a=x and B =xcos(1/x) (as x—0)
are not comparable, i.e. their ratio has no limit.
Solution. Indeed, 11m ’ﬁﬂSxL”ﬁ) llm cos(l/x) does not exist (prove

it!), which means that these 1nﬁn1te51mal functions are not com-
parable.

1.11.8. If x— 0, then which of the following infinitesimals is
(are) of a higher order than x; of a lower order than x; of the
same order as x?

(a) 100x; (b) x% (c) 6sinx; (d) sin®x; (e) 3/ tan® x.

1.11.9. Let x — 0. Determine the orders of the following infini-
tesimal functions with respect to x:

(a) 2sintx—xs; (b) )V sintx+ x5
© V1i+xr—1; (d) sin2x—2sinx;
() 1—2cos(x—|— %), (f) 21/ sin x;

) x—l ; (h) tanx+x?%

(i) cosx— 3/ cos x; (j) ex—-cos x.

1.11.10. Assuming the side of a cube to be an infinitesimal, de-
termine the order of smallness of the diagonal of the cube (d); of
the area of its surface (S); of its volume (V).

§ 1.12. Equivalent Infinitesimals.
Application to Finding Limits

If the functions «(x) and P (x) are infinitesimal as x — a and if
o (x) ~ ¥ (x), B(x) ~8(x), then

xllflﬂ B ((;C)) = 11m g((x)) (replacing an infinitesimal by an equivalent one).




72 Ch. 1. Introduction to Mathematical Analysts

If
lim f(x)=4k, 0<]|k|< oo,

then
[ (x)a(x) ~ ko (x).

If
o (x) ~ v (x),
B (x) ~7v(x),

then
o (x) ~ P (x).

For two infinitesimal functions to be equivalent it is necessary
and sufficient that their difference be an infinitesimal of a higher
order as compared with each of the two.

Listed below are infinitesimal functions:

(e (x) is an infinitesimal as x — 0)

(1) sina(x) ~a(x); (2) tana (x) ~ o (x);

(3) 1—cosa(x) ~ [ (x)]%2;

(4) arcsina (x) ~a(x); () arctana (x) ~ a (x);
6) In[l14+a(x)] ~a(x);, (7)a**®—1~a(x)ina
(a > 0), in particular, e*® —1 ~ a (x);

(8) [l +a(x)]?P—1 ~ Pa(x), in particular, / l-{—oc(x)——1~(5¥l.
1.12.1. Prove that as x— 0
[ |
1 Ll 1 —
(a) 1 Vi T2 x;  (b)

(c) sin ]/ xVx ~ ]/xz—H/F.
Solution. (a) By formula (8) at P=1/2 we have

! Torr—1)~ 1.1
Vitx Vﬁ() I+Hx—D~1

(¢c) By formula (1) we have
sin ]/ xl/j\c_~]/xl/;=x3“,
]/xz_*_l/;c—s —x3/8)/ T+ x1/2 ~ x3/3,
whence sin]/ xVx ~ ]/ PN VSR

1.12.2. Replace each of the following infinitesimals with an equi-
valent one:

(a) 3sina—>ba3 (b) (1 —cosa)+ 16a*+ dat -+ 6a®.

I
14x
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Solution. (a) Note that the sum of two infinitesimals o and B
of different orders is equivalent to the summand of the lower order,
since the replacement of an infinitesimal with one equivalent to it
is tantamount to the rejection of an infinitesimal of a higher order.

In our example the quantity 3sina has the order of smallness 1,
(—5a*)—the order of smallness 3, hence

3 sino 4 (—5a?) ~ 3sina ~ 3a.
(b) (1—cos a)®+ 16a® + bat + ba® = 4sin? % -+ 16a® 4- 5at + ba®.
The summand 16a® is of the lower order, therefore
(1 —cos a)? -+ 16a?® + 5ot 4 6> ~ 16a°.

1.12.3. With the aid of the principle of substitution of equiva-
lent quantities find the limits:

sin 5x

. . 1—cos x
a) lim ————; (b) lim ————.
()x-»oln(l‘l"4x) (b) x>0 l—cos-;—’

. 5 . 21
© lim 2% . (d) lim V1_+x_+4_x___
x-»Ol/l_l_x‘Z__] x>0 sin 4x

. sin2x-+arc sin2 x— arctan?x
(©) xll»mo 3x ’

. 3sinx—x24x3 |
() ilmo tan x+2sin2x5x4 *

. (sinx—tan x)2 4 (1 — cos 2x)4 +x®
(©) xh_',no 7 tan? x4 sinb x4 2 sin® x '

el

() lim sin ?/; In(1+3x) .
x>0 . ( 5 f/x— )’
(arctan Vx)* \e —1

. . l—cosx-42sin x—sin3 x— x2 4 3x4
(M xhino tan3 x—6 sin* x 4 x —5x?

Solution. (a) We have sindx ~ 5x; In(l+ 4x) ~ 4x (see the list
of equivalent infinitesimals on page 72). Therefore

lim S5y 228
o IM(I+4%) g4 47

. . InJl —1
(c) lim Incosx lim n| +(go:x N
x0 1 fxt—1  x-0 x4/
p— 2
— 4 lim E= g i 22— g,
x>0 X x>0 X

(d) From the list of equivalent infinitesimals we find:
V1id+x402—1~ (x4 x%)/2 ~ x/2, sindx ~ 4x.
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Therefore
lim YAtx -1 o #2 L
£ o0 sin 4x —x—>0 4x 8"

(e) Using the list of equivalent infinitesimal functions given on
page 72 we obtain

sin 2x 4+ arc sin? x —arc tan? x ~ sin 2x ~ 2x.
Hence,

lim sin 2x4-arc sin? x —arc tan®x =1
x->0 3x x
(hysiny/ X~/ x; In(1+3x) ~ 3y;
arctan ) T~V % &V 1 ~5Y%
lim sin f/jc In (14 3x) _
x-0 (5:;/; > x—»Ox.5d X
(arc tan V x)% \e —1 X0l

1.12.4. Find the approximate values of the roots /' 1.02 and

1/0.994. Estimate the absolute error.
Solution. Use the approximate formula

V1idx~14x/2 (%)
(for x sufficiently close to zero). In our case

1/1+002~1+°°2_1.01;
Y T=0. 006~1—°°—ﬁ—0997

To estimate the error we note that
—— l ——
sV THa—=)=5 =2V T+x+2)=
1 — 1 — 2 1/ x\2 «2
=g G+ 1=2VaF T+ 1) =5 (Vx+1—1) ~7(5) =2,
Hence, the absolute error of the approximate formula (x) is esti-
2
mated by the quantity %.

Using this estimate we find that the absolute error of the root
S 2
VT2~ 101 is ~ 292000005, and the absolute error of

1 0.994 ~ 0.997 amounts to ~ & ";’6’ ~ 0.000005.

1.12.5. Prove that, as x — 0,
(a) f/l—i—x—-l~§lx;
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(b) arctanmx ~ mx;
() l—cos?x~ % sin? x.

1.12.6. For x— 0 determine the order of smallness, relative
to the infinitesimal P (x) =x, of the following infinitesimals:

a) )/ sin®x+x% (b) x “+x_)
+y/x
1.12.7. For x — 2 determine the order of smallness, relative to
the infinitesimal B (x) =x—2, of the following infinitesimals:

(@) 3(x—2)>+2(x2—4); (b) }/sinnx.

1.12.8. Making use of the method of replacing an infinitesimal
with an equivalent one, find the following limits:

. sin3x | In (14 sin 4x)
(a) }L"; TEL (b) l“" N Temex_
sin 3x
—1 . arctan 3x
(© llm o In (1 +-tan 2x) ; (d) VII_ET(]) arc sin2x °’
In (2—cos 2x) | . V.H— sin3x—1
) hmo In2 (sin 3x+ 1) ' () 1111[1) In (14 tan 2x) °’

In (14 2x —3x24-4x3) | Vige® 1
(2 hm o In(l—x42x2—7x3%) ’ (h) lin l—cosx °

x->0

1.12.9. Find an approximate value of the root ;/ 1042.

§ 1.13. One-Sided Limits

A number A is called the limit to the right of the function f(x)
as x—»x(,(A— llm f =f(x,+0)) if for any & > O there exists

8 (¢) > 0 such that for all x satisfying the inequality 0 < x—x, < 8 (¢)
and belonging to the domain of definition of the function f(x) the
inequality |f(x) —A|<e holds true. The limit to the left of the
function f(x,—0) as x — x,—0 is defined in a similar way. If x,=0,
then we write simply x — +0 or x — —0 and, respectively, f(-4-0)
and f(—0).

1.13.1. Find the one-sided limits of the functions:

| —2x4+3 ifx<,
2) f(x)—le——5 ifx>1

(b) f(x):li:_;—:—l— as x—1;

asx — 1;
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© F=Y1=s2 45 g,

1
(d) f(x)=3+m as x— I

(e) f(x)=cos(m/x) asx— 0;
() F(x)=5/(x—2)* asx— 2.

Solution. (a) Letx<C1. Thenf (x)=— 2x+4 3. Hence, f(1—0)=
p = lm] f(x):l is the limit to the left.
x->1-0
If x>1, then f(x)=3x—5; hence,
f(l1+0)= llm f(x)=—2 is the limit
x-1+0
to the right (see Fig. 28).
_ Vi—cos2cx V2sin*x
(c) fr=ti=me2e _Foomwx
_ I/TZISinxl
1k - x
1 |
10 sinx, if 0 2
\smxl—-[ sin x, <x <72,
l \ —sinx, if —/2< x<0.
Fig. 28 Hence,
f(—=0)= lim f(x lim <~— Vo Si];x):—- V2,
x> =0 X ->—
f(+0)= lim f (x)= lim (l/§ S“”):l/@.
x—>+0 x->+0 x

(d) The expression 1/(1 —x) tends to 4 oo, when x tends to 1,
remaining less than 1, therefore

lim 7/0-% = & oo, lim 0, f(1—0)=3

X-+1=0 x—>1 Ol+7‘/“—x)

Further, as x—14-0 we have 1/(1—x)—-—oo. Therefore
lim 7v/0-% =0,

x-1+0
1
f(14-0) xlmlo(3‘l"—+m>=3+1= 4.

(e) Let us choose two sequences, {x,} and {x;}, with the general
terms

coo b 2 —
Xy =g and x, =TT (n=1,2, ...)

respectively.
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Thenlim x,, = lim x;, =0 and

n-x n-»w
limf (x,)= lim cos2nn =1,

n-x n - x

lim f (x;,) = lim cos (2n + l) X0

n-> e n-> "%

Hence, the function f(x) has no limit to the right at the point 0;
taking into account that f(x) is an even function, we conclude that
it has no limit to the left elther (see Fig. 29).

¥
_______________ 1

N
N

-1
Fig. 29

1.13.2. Prove that, as x — 1, the function

e )__’,c—l—l at 0<Cx <1,
l3x+2 at 1< x <3

has a limit to the left equal to 2 and a limit to the right equal to 5.

1.13.3. Find the one-sided limits of the following functions as
x—0:

(a) f(x) 21/)(’
(b) ! x)—e”"
o) flx)= lsmxl

§ 1.14. Continuity of a Function.
Points of Discontinuity and Their Classification

Let the function y=/f(x) be defined on the set X and let the
point x,€ X be the limit pomt of this set. The function f (x) is said
to be continuous at the point x, if llm f (x)={f(x,).- The latter con-

dition is equivalent to the condition lxm Ay (x,) = lim [f(x,+ Ax) —
Ax >0 Ax >0
_f(xo)] =0.
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The function f(x) is continuous at the point x, if and only if
f(xn—O)_—_f(xo—kO):/‘(x{,).

The function f(x) is continuous on the set X if it is continuous
at every point of this set.

Points of Discontinuity of the First Kind. Let the point x, be the
limit point of the domain of definition X of the function f(x).
The point x, is called a discontinuity of the first kind of the fun-
ction f(x) if there exist the limits to the right and to the left and
they are finite. If f(x,—0)=f(x,4-0)=~=f (x,), then x, is called
a removable discontinuity. Further, if f(x,—0)==f (x,+0), then x,
is a non-removable discontinuity of the first kind, and the difference
f(x,+0)—Ff(x,—0) is called a jump discontinuity of the function
f(x) at the point x,.

Points of Discontinuity of the Second Kind. If at least one of
the limits of f(x,—0) and f(x,+0) is non-existent and infinite,
then point x, is called a discontinuity of the second kind of the fun-
ction f(x).

1.14.1. Using only the definition prove discontinuity of the fun-
ction f(x)=3x*+5x*+ 2x2+3x+4 at any «x.

Solution. let x, be an arbitrary point on the number scale. First
find lim f (x):

x> Xy

lim f (x) = lm (3x* 4 5x3 4 2x* + 3x + 4) = 3x) -+ bx, + 242+ 3x,5- 4.

X X X > X,
Then compute the value of the function at the point x,:
f(X(,) = 3)\3—}—5)((;4—2)(33 + 3X0+4'
Comparing the results thus obtained, we see that

lin f(xo) - f ()‘.1)'

X - Xo

Hence, the function f(x) is continuous at the point x, by definition.
Since x, is an arbitrary point on the number scale, we have proved
continuity of the function for all values of x.

1.14.2. Given the functions:

6— 5\5 for 1 <x<3,

for 3<Cx < oo
] for x<3,
l 3\¢ for x> 3;

(2’5 +3) for —oo < x<1,
2) i
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Find the points of discontinuity (if any). Determine the jump
discontinuities of the functions at the points of discontinuity of the
first kind.

Solution. (a) The domain of definition of the function is the entire
number scale (—oo, oo). In the open intervals (—oo, 1), (1, 3),
(3, oo) the function is continuous. Therefore discontinuities are pos-
sible only at the points x=1, x=3, at which analytic representa-
tion of the function is changed.

Let us find the one-sided limits of the function at the point x = 1:

f(1—0)= lim %(2)(2_;.3)._,. 1;

x> 1-0

f(1+0)= lim (6—5x)=1.
x> 140
The value of the function at the point x =1 is determined by the
first analytic representation, i. e. f(1)=(2+3)/5=1. Since

F(1—=0)=F(1+0)=f (1),

the function is continuous at the point x=1.
Consider the point x=3:
f3—0)= lim (6—5x)=—
x->3-0
f(3+0)= llm (x——3)—
x-+3+0
We see that the right-hand and the left-hand limits, though finite,
are not equal to each other, therefore the function has a disconti-
nuity of the first kind at the point x=3.
The jump of the function at the point of discontinuity is
FB+H0)—F(3—0)=0—(—9) =
(c) The function is defined and continuous throughout the entire
number scale, except at the point x=3/2. Since 2x—3 > 0 for
x> 3/2 and 2x— 3 < 0 for x < 3/2,

f(x)={ 1 at x > 3/2,

—1 at x < 3/2.
Hence,
f3/2+0)=1, f(3/2—0)=—1.

Therefore, at the point x=3/2 the function has a finite discon-
tinuity of the first kind. The jump of the function at this point
f(3/240)—f(3/2—0) is equal to 1 —(—1)=2.

1.14.3. Test the following functions for continuity:

(smx

@ J () =1 for x 5= 0,
[ 1 forx=0;
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(b) [ (x)=sin(1/x);
sin (1
@ 0= {0 10
_ [ 4-3% for x <0,
(d) f(x)—‘ 2a+ x for x>0

(e) f(x)=arctan(l/x); (f) [ (x)=(x*+1D)/(x+1).
Solution. (a) The function is continuous at all points =4 0. At
the point x =0 we have

FO)=1; lim Mo gy My,
X—>—0 X->+0
Hence, at this point the function is continuous as well, which
means that it is continuous for all values of x.

4
1

(b) The function is defined and continuous for all x=~0. There
are no one-sided limits at the point x=0 (cf. Problem 1.13.1
(e)). Therefore, at the point x=0 the function suffers a disconti-
nuity of the second kind (see Fig. 30).

(d) f(—0)=4, and f (+0) = 2a; the equality [ (—0)=](4-0) =] (0)
will be fulfilled, i. e. the function f(x) will be continuous at the
point x=0 if we put 2a=4, a=2.

) f(—=1—=0)=f(—14+0)= lim (x*—x+1)=3, i.e. both one-

X—->=1
sided limits are finite and coincide. But at the point x=—1 the
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function is not defined and, therefore, is not continuous. The graph
of the function is the parabola y = x*—x -+ 1 with the point M (—1, 3)
removed. If we redefine the function putting f(—1)=3, then it
will become continuous. Thus, at x=—1 the function has a remo-
vable discontinuity.

1.14.4. Test the following functions for continuity:

(a) f(x)=E (x). It should be borne in mind that the function
E (x) is defined as the maximum integer n contained in the num-
ber x, i. e. as a number satisfying the inequality n < x.

(b)

N [ 1if x is rational,
*) = |\ 0 if x is irrational.

A (x)is called the Dirichlet function. For instance, A (0) = 1; A(—1/2)=1;
AV 2)=0; A(n)=0, etc.

Solution. (a) The function E (x) is defined throughout the entire
number scale and takes on only integral values. This function is
discontinuous at every integral value n of the independent va-
riable, since E(n—0)=n—1;

E (n+0)=n (see Fig. 31). ”

(b) Let us choose an arbitrary I 4
point x, on the x-axis; two cases Lo
are possible: (1) the number x, s e B
is rational; (2) the number x, is -l | |
irrational. -3 -2 -1 P z

In the first case A(x,)=1. In T oy 1 2 3 4
any vicinity of a rational point ! 1
there are irrational points, where bl L
A(x)=0. Hence, in any vicinity ]
of x, there are points x for which — -3t

| Ay | =2 (%) —h(x)|=1. Fig. 31
In the second case A (x,)=0.
In any vicinity of an irrational point there are rational points

at which A (x)=1. Hence, it is possible to find the values of x for
which

| Ay|= [ (x)) = (x)] = 1.

Thus, in both cases the difference Ay does not tend to zero as
Ax — 0. Therefore, x, is a discontinuity. Since x, is an arbitrary
point, the Dirichlet function A (x) is discontinuous at each point.
The graph of this function consists of a set of points with irratio-
nal abscissas on the x-axis and of a set of points with rational
abscissas on the straight line y=1, that is why it is impos-
sible to sketch it.
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1.14.5. Using the definition of continuity of a function in terms
of “e—08",test the following functions for continuily:

(@) f(x)=ax+0b (a=~0)

b [« il x is rational,

(0) ()= | —x? if x is irrational.

Solution. (a) Choose an arbitrary point x,. According to the “¢-—§”
definition it is necessary to show that for any preassigned, arbitra-
rily small number € > 0 it is possible to find a number & > 0 such

that at |x—x,| < & the inequality |f(x)—/f(x,)| <& holds true.
Consider the absolute value of the difference

1F () —F (x0) | = | (ax 4 b)— (ax, 4 b) | = |ax +b—ax,—b| = |a || x—x,|.

Let us require that |f(x)—f(x,)|<e. This requirement will be
fulfilled for all x satisfying the inequality

lallr—x,| <& or [x—x,| <e/|a] (a5=0).

Hence, if we take 8<{e/|al|, then at |x—ux,| <8 the inequality
{f (x)—F(x)| <e is fulfilled. Continuity is thus proved for any
point x =x,.

(b) Choose an arbitrary point x,. If {x,} is a sequence of rational
numbers tending to x,, then lim f(x,)=x3. If {x,} is a sequence

Xp=+Xo
of irrational numbers tending to x,, then lim f(x;)=—x%. Atx,+#0
the indicated limits are different and he;ceu the function is discon-
tinuous at all points x=40.
On the other hand, let now x=0. Find the absolute value of
the difference |f(x)—f(0)]:

) —FO)[=]£x—0]=x

It is obvious that x* <e at |x| <} e If e>0 is given, then,
putting 8<<) e and |x—0|=|x] < 8, we obtain |Af(0)|=x2 <e.
Hence, 2t the point x=0 the function is continuous. And so, the
point x =0 is the only point at which the function iscontinuous. Note
that the function under consideration can be expressed through the
Dirichlet function (see Problem 1.14.4 (b)): f(x)=x*[2A (x)—1].

1.14.6. Determine which kind of discontinuity the following
functions have at the point x = x,:

() f(x)—_—J x+2 for x <2,

| 22—1 for x>=2; x,=2;
| 1
(b) f(x)=arc tan —=; xo=15; () f(x):m; Xe=0;

(d) [ix)=tanx; xo=m/2;
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() f(x)=V x—E (V x); xo==n*, where n is a natural number.
Solution. (a) Find the one-sided limits at the point x,=2;
f(2—0)= lim (x+2)=4;

X>2-=0

f@+0)= lim (x*—1)=3.
xX-»2+0

Here the limits to the right and to the left exist, are finite but
do not coincide, therefore the function has a discontinuity of the
first kind at the point x,=2.

(e) The function E (J/ x) has discontinuities of the first kind at
every point x=n? where n is a natural number (see Problem

1.14.4 (a)), whereas the function }J/ x is continuous at all x>0.
Therefore the function f(x)=V x—E () x) has discontinuities of

the first kind at the points 1, 4, 9, ..., n?,
1.14.7. Test the following functions for continuity
(2) f e"—l,
(=1 for x50,
(b) J(0)=3
[ 3 for x=0;
© f :‘[ el for x=%0,
| 0 for x==0;
(d) f(x)= lim (smx)* (e) f(x)= ':;Eil ;

(1) FO)=E ()4 E (— 2.

1.14.8. For each of the following functions find the points of
discontinuity and determine the jumps of the function at these
points:

4

@ 1) =g—g775
+2 .
(b) f(x) =x+ gy
(© F o2l
[ —x for x<{ 1,
f(v)h{l T for x> 1.

1.14.9. Redefine the following functions at the point x=0 so as
to make them continuous:
tan x

(@) [ ()==—-;
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f(\’ —73)6’

(© f(x)= V‘*"“
sin® .

(d) H'\’)zl—ico;x'

§ 1.15. Arithmetical Operations on Continuous
Functions. Continuity of a Composite Function

If the functions f(x) and g(x) are continuous at the point x =x,,
then the functions
(1) =g @ F@-g(; ) L& (g(r)»0)
are also continuous at this point.
If the function u =@ (x) is continuous at the point x=x, and
the function y=f(u) is continuous at the point u,=¢(x,), then
the composite function y=Ff[¢(x)] is continuous at the point x = x,.

1.15.1. Test the following functions for continuity:
o8t ll
(@) f(x)—x4—|—4x3+8x2+8x+4’
3 sin? cos?x+1,
b) [ () ==

x3 cos x4+ x?sinx
c) f(x)= cos (I/sinx) °

Solution. (a) A function representing a ratio of two continuous
functions (polynomials in this case) is discontinuous only at points
for which the denominator becomes zero. But in our case

x4 4x3 - 8x% 4 8x -+ 4 = (x®+ 2x -}-2),

and since x*4-2x+2=(x+41)24+1>0 at any x, the denominator
never becomes zero. Hence, the function f(x) is continuous through-
out the entire number seale.

(b) The function f(x) suffers discontinuities only at points for
which the denominator equals zero, i.e. at points which are the
roots of the equation

4cosx—2=0 or cosx=1/2,
whence
Xx=x,=+n/3+2an (n=0, +1, =2, ...).

Thus, the function f(x) is continuous everywhere, except at the
point x,.
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(c) Just as in the preceding example, the numerator is continu-
ous throughout the entire number scale. As far as the denominator
is concerned, according to the theorem on continuity of a composite
function, it is continuous at points where the function u=l/sinx
is continuous, since the function cos u is continuous everywhere.
Hence, the denominator is continuous everywhere, except at the
points x=*kn (k an integer). Besides, we must exclude the points
at  which cos(l/sinx)=0, i.e. the points at which 1/sinx =
= (2p+1)n/2 (p an integer), or sinx=2/[(2p+ 1)xn]. Thus, the
function f(x) is continuous everywhere except at the points x=kn
. 2
and x=(—1)" arcsmm—l—nn (k, p,n=0, =1, =2, ...).

1.15.2. Test the following composite functions for continuity:

(a) y=cosx", where n is a natural number;
(b) y=rcoslog x;
(© y=VT1/2—cosx.

Solution. (a) We have a composite function y=cosu, where
u=x". The function y=cosu is continuous at any point «, and
the function u=x" is continuous at any value of x. Therefore, the
function y=cosx" is continuous throughout the entire number scale.

(¢) Here y=1'1/2—u?, where u=cosx. The function J'1/2 — 2
is defined and continuous on the interval |—V 2/2, V22|, the
function u=cosx is continuous throughout the entire number scale.
Therefore, the function y—:-l/l/2—cos2 x is continuous at all values
of x for which

f— /4 4+ 2nn < x < 3n/4 -+ 2nn,
leosx|<V 272, e { 5n/4 + 2nn < x << Tn/4 4 2mn.

1.15.3. For each of the following functions find the points of
discontinuity and determine their character:

B —_ I .
@) y= -I—u , where u=_—;

. [ x—1 for x>0,
by y=u?, where u_] x+1 for x< 0

(c) y=:%g;, where u=tanx.
Solution. (a) The function

1
u:(p(x)=x__l
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suffers a discontinuity at the point x=1. The function

y=F W)= s

suffers a discontinuity at points where u*+u—2=0, ie u,=—2
and u,=1. Using these values of u, find the corresponding values
of x by solving the equations:

1
x—1’ 1=x—l

—9 =

.
’

whence x=1/2 and x=2.

Hence, the composite function is discontinuous at three points:
x,=1/2, x,=1, x,=2. Let us find out the character of disconti-
nuities at these points.

Iim y= lim y=0,

x - 1 U - ®
therefore x,=1 is a removable discontinuity.

lim y= lim y=oo; lim y= lim y = oo;
x> 1/2 U - — 2 x> 2 u -1

hence, the points x,=1/2, x,=2 are discontinuities of the second
kind.

1.15.4. Given the function f(x)=1/(1—x). Find the points of
discontinuity of the composite function

y=HIF @1}

Solution. The point x=1 is a discontinuity of the function

v:f(x):ré;.

If xs=1, then
| —1
u:f[f(x)]=l—l/(l—x)=x ¥

Hence, the point x=0 is a discontinuity of the function
u=Ff[f(x)]
If x50, x=1, then
1
y=HT N = —=pa="*

is continuous everywhere.
Thus, the points of discontinuity of this composite function are
x=0, x=1, both of them being removable.
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§ 1.16. The Properties of a Function Continuous on a
Closed Interval. Continuity of an Inverse Function

I. The function f(x), continuous on the interval [a, b], possess-
es the following preperties:

(1) f(x) is bounded on [a, b];

(2) f(x) has the minimum and maximum values on [a, b];

3) If m= min f(x), M= max f(x), then for any A satisfy-

ag<x<b a< x < b
ing the inequalities m<C A<CM there exists a point x, € [a, b] for
which [ (x,) = A.

In particular, if f(a)-f(b) <0, then we can find a point
¢ (a < c< b) such that f(c)=0.

[I. Continuity of an Inverse Function. If the function y={(x) is
defined, continuous and strictly monotonic on the interval X, then
there exists a single-valued inverse function x =@ (y) defined, con-
tinuous and also strictly monotonic in the range of the function

y=F(x).

1.16.1. Does the equation sinx—x-+ 1=0 have a root?
Solution. The function

f(x)=sinx—x-+1
is continuous over the entire number scale. Besides, this function
changes sign, since f(0)=1, and f(37/2) =— 3n/2. Hence, by pro-
perty (3) within the interval [0, 3m/2] there is at least one root
of the given equation.

1.16.2. Has the equation x*—18x+42=0 roots belonging to the
interval [—1, 1]?

1.16.3. Prove that any algebraic equation of an odd power with
real coefficients

QX L a x4 4 a,, x4 a,,,, =0 (*)
has at least one real root.
Solution. Consider the function
[(X)=a 14 a,x°" 4 . - QX+ gy 4,
which is continuous throughout the number scale.
Let, for determinacy sake, a, > 0. Then

lim f(x)= - oo, and lim f(x)=— oo.
X->+® X > -

Hence, we can find numbers a, b, a <b such that f(a) <0;
f () > 0. By property (3), between a and b there exists a number
¢ such that f(c)=0, which proves that the equation (*) has at
least one real root.
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1.16.4. Let the function f(x) be continuous on [a, b] and let
the equation f(x)=0 have a finite number of roots on the inter-
val [a, b]. Arrange them in the ascending order:

a<x, < x, < xy<ou ol x, < b,

Prove that in each of the intervals

(av xl)’ (xl’ xz)v (x2’ x:s)’ AL | (xm b)

the function f(x) retains the same sign.

Solution. If the function changed its sign on a certain interval,
then we could find one more root of the function, which contradicts
the condition. To determine the sign of the function on any of the
indicated intervals it is sufficient to compute the value of the func-
tion at an arbitrary point of the appropriate interval.

1.16.5. Given a function on the interval [—2, 4 2]
x+2 if —2<<x <0,
F0=1 —(et9)ii o0<x<2
Is there a point on this closed interval at which f(x)=0?

Solution. At the end-points of the interval [—2, 4-2] the given
function has different signs:

[(—2)=+6; [(+2)=—6.

But it is easy to notice that it does not become zero at any point
of the interval [—2, +2]. Indeed, x*+2 >0 and —(x*+2) 20
at any x; this is due to the fact that f(x) has a discontinuity at
the point x=0.

1.16.6. Does the function

f(x)=x%4—sinnx+3
take on the value 2% within the interval [—2, 2]?
Solution. The function f(x)=x%4—sinnx43 is continuous

within the interval [—2, 2]. Furthermore, at the end-points of this
interval it attains the values

f(—=2)=1 [(2)=5.
Since l<2—;—<5, then, by property (3), within the interval
[—2, 2] there exists at least one point x such that f(x):?-;—.
1.16.7. Show that the function

2% 1 for—1 << x <0,
fx)={ 2% for x=0,
2 —1 for 0 <<x <1,
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defined and bounded on the interval [—1, 1], has neither maximum,
nor minimum values.

Solution. In the interval [—1, 0) the function increases from 3/2
to 2 and in (0, 1] it increases from 0 to 1, it does not attain either
the value 2 or 0. Therefore the function is bounded but never reaches
its upper and lower bounds. This is because there is a discontinuity
at the point x=0.

1.16.8. Show that on any interval |a, b] of length greater than
unity the function f(x)=x-— E (x) attains its minimum value but
never reaches its maximum.

Solution. In any interval [n, n—{— 1), where n is an integer, the
given function f(x) increases from 0 to l, never attaining the maxi-
mum. Hence, 0<{f(x) < 1 for any

x. Since on the interval |a, b] we
can find at least one internal in-
tegral point n, then f(n)=0 and
lim ()= 1, but f(x)=1 for any / //

x. [t means that the function reaches -2 -1 0
its minimum value but never
reaches its maximum. This is be-
cause there is a discontinuity at the point x=n (see Fig. 32).

Fig. 32

1.16.9. Prove that the function y=>"*}/x (n a natural number)
is continuous throughout the number scale, considering it as a function
inverse to y=x"*1,

Solution. The ‘function y=x?*! is continuous and increases [rom
— oo to oo over the entire number scale. Hence, the inverse function
x=""*}/"y is defined for all y, continuous and increasing. Denoting
the independent variable again as x, we find that the function

y=""*%/x possesses the required properties.
1.16.10. Prove that for any function of the form
Yy=ax*"*14a x*"" 1L a3 L taxta,,,, (%)

where a,, a,, a,, ..., a,, a,,, are positive numbers, there exists
an inverse function increasing and continuous throughout the num-
ber scale.

Solution. As is known, the functions x, x®, x*, ..., x*"+1 increase
throughout the entire number scale. Then, since the coefficients
a,(i=0,1, ..., n+1) are positive, the function f(x)=ax?"*" 4-

+ax** '+ ...+a,x+a,s+, also increases. Furthermore, it is con-
tinuous. Therefore, for a function of the form (%) there exists an
inverse function increasing and continuous over the entire number
scale.
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Note. This example establishes only the existence of an inverse
function x =g (y), but gives no analytic expression for it. It is not
always possible to express it in radicals. The problems of the exis-
tence of an inverse function and of expressing it analytically should
not be confused.

1.16.11. Prove that there exists only one continuous function
x=1x(y) (— oo <y < o) which satisfies the Kepler equation:

x—esinx=y (0<e<l).

Solution. Let us show that y(x) is an increasing function. Let
x, < x, be arbitrary points on the number scale. Then
Y (%) -—y () = (x,—esinx) —(x, —esinx,) =

=(x,—x,)—e(sinx,—sinx,).

Estimate the absolute value of the difference |sinx,—sinx,|:

2 — X1 Xa+x;
3 Ccos )

Xo—X
< 212—211=|x2—x1|= (Xg—x,).

. .o X
| sinx, —sin x1|:2|sm <

<_2|sin’igﬁ
Since 0 <e <1,
elsinx,—sinx, | < (x,—x,),

whence .

()CZ——XI)—S(SIH X, —sinxy) =y (x;) —y (x,) > 0.
Since y (x) is a continuous function in the interval (— oo, o0), the
inverse function x is a single-valued and

q continuous function of y.
¥ 1.16.12. Show that the equation
x*—3x+4+1=0

has one root on the interval [1, 2]. Cal-
z  culate this root approximately to within

-1 0 1 two decimal places.
1.16.13. The function f(x) is defined
-1t on the interval [a, b] and has values of
Fig. 33 the same sign on its end-points. Can one

assert that there is no point on [a, 0]
at which the function becomes zero?

1.16.14. Prove that the function
[ x+1at —1<x<0,
f=y —x at o0<x<1

is discontinuous at the point x=0 and still has the maximum and
the minimum value on [— 1, 1] (see Fig. 33).
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§ 1.17. Additional Problems

1.17.1. Prove the inequalities:

(a) n! < (%)n for a natural n>1;
1 3 5 2n—1 1
(b) ‘§' . T . g DY 2[1 ]/'27_;_—1 .

1.17.2. Prove the inequalities:
(a) 20230 > 30322,
(b) 200! < 100200,

1.17.3. Solve the inequalities:
(@ [[x]—2|<T

(b) |2—3x|=1]>2;

(€ =2V 2+1>x2.

1.17.4. Can a sum, difference, product or quotient of irrational
numbers be a rational number?

1.17.5. Do the equations
(@) |sinx|=sinx+3, (b) |[tanx|=tanx+3
have any roots?

1.17.6. Prove the identity (@'—)2—&(%)2:)&

1.17.7. Prove the Bernoulli inequality
(1+X1)(]+X2) (1+xn)>1+x1+x?+ coe X,

where x,, X,, ..., x, are numbers of like sign, and 14 x;>0
(i=1,2,...,n).

1.17.8. Find the domains of definition of the following functions:
(a) f(0) =V F"— %
() f () =9/ sinl x;
(©) f(x) =V —sin®mx;
1 1
(d) f(x)='m/—7ﬁ and g(x):-]/x:—]}:];
(e) f(x)=arcsin(|x|—3);

(f) f (x) =arc COSEi‘rITx .

1.17.9. Are the following functions identical?
(a) f(x)=% and ¢ (x) = I;
b) f(x)=logx* and ¢ (x) =2 log x;



92 Ch. I. Introduction to Mathematical Analysis

(©) f(x)=x and ¢ (x) =(V %)%

(d) f(x)=1 and ¢ (x) ==sin® x4 cos®x;

) f(x)=log(x—1)+log(x—2) and ¢(x)=log(x—1)(x—2).

1.17.10. In what interval are the following functions identical?

(a) () =x and g () =10Vex;

) fx)=VxVx—1 and @ (x)=Vxx—1).

1.17.11. An isosceles triangle of a given perimeter 2p =12 revol-
ves about its base. Write the function V (x), where V is the volume

of the solid of revolution thus obtained and x is the length of the
lateral side of the triangle.

1.17.12. Investigating the domain of definition of functions,
(a) solve the inequality

Vx+2+Vx—5=V5—x;
(b) prove that the inequality
log2—x(x—3)>_

has no solutions.

1.17.13. The function y =signx was defined in Problem 1.5.11 (n).
Show that

(a) |x|=xsignx;

(b) x=|x]|signx;

(c) sign (sign x) ==sign x.

1.17.14. Prove that if for a linear function

f(x) =ax+0b

the values of the argument x=x, (n=1, 2, ...) form an arithmetic
progression, then the corresponding values of the function

yn:f(xn) (n: l' 2! .. )
also form an arithmetic progression.

1.17.15. Prove that the product of two even or two odd functicns
is an even function, whereas the product of an even and an odd
function is an odd function.

1.17.16. Prove that if the domain of definition of the function
f(x) is symmetrical with respect to x =0, then f(x)+f(—x) is an
even function and f(x)—f(—x) is an odd one.

1.17.17. Prove that any function f(x) defined in a symmetrical
interval (—{, /) can be presented as a sum of an even and an odd
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function. Rewrite the following functions in the form of a sum of
an even and an odd function:
+2
(a) [ () =1 (b) y=ar.
1.17.18. Extend the function f(x)=x2+x defined on the inter-
val [0, 3] onto the interval [—3, 3] in an even and an odd way.

1.17.19. The function {x}=x—E (x) is a fractional part ol a
number x. Prove that it is a periodic function with period 1.

1.17.20. Sketch the graph of a periodic function with period
T =1 defined on the half-open interval (0, 1] by the formula y = x2.

1.17.21. Let us have two periodic functions f (x) and ¢ (x) defined
on a common set. Prove that if the periods of these functions are
commensurate, then their sum and product are also periodic functions.

1.17.22. Prove that the Dirichlet function A(r) (see Problem
1.14.4 (b)) is a periodic one but has no period.

1.17.23. Prove that if the function
f (x) =sin x4 cosax
is periodic, then a is a rational number.

1.17.24. Test the following functions for monotony:
@ fx) =]x[; (b) [(x)=|x|—x.

1.17.25. Prove that the sum of two functions increasing on a
certain open interval is a function monotonically increasing on this
interval. Will the difference of increasing functions be a monotoiic
function?

1.17.26. Give an example of a non-monotonic function that has
an inverse.

1.17.27. Determine the inverse function and its domain of de-
finition if
x if —oo<x<1,
(@) y —tanh x; (b) y=4{ +* if 1<<x<{4,
2% if 4 < x < oo.

1.17.28. Show that the equation x*+2x+1=— 14} x has no
real roots.

1.17.29. Construct the graph of the function
y=[(x—=O+](x+1),
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where
[ R(1—|x]|/) at |x]|<!
F =10 at x| > L.

1.17.30. Knowing the graph of the function y=f(x), sketch the
graphs of the following functions:

() y=2(x); (b) y=VFi@; (© y=[[fx)].

1.17.31. Prove that the graphs of the functions y=1log,x and
y=logen x can be derived from each other by changing all ordinates
in the ratio 1:1/n.

1.17.32. Prove that if the graph of the function y=f(x), defined
throughout the number scale, is symmetrical about two vertical
axes x=a and x="> (a < b), then this function is a periodic one.

1.17.33. Let the sequence x, converge and the sequence y, diverge.
What can be said about convergence of the sequences

(a) xn+yn; (b) xnyn?

1.17.34. Let the sequences x, and y, diverge. Can one assert that
the sequences x,-+y,, x,y, diverge too?

1.17.35. Let a, be an interior angle of a regular n-gon (n =3,
4, ...). Write the first several terms of the sequence o, Prove
that lima,=m.

1.17.36. Prove that from limx,=a it follows that lim|x,| =]a|.

n—» o

Is the converse true?

1.17.37. If a sequence has an infinite Iimit, does it mean that this
sequence is unbounded? And if a sequence is unbounded, does it
mean that it has an infinite limit? Prove that x,=n(-D" is an
unbounded but not an infinite function.

1.17.38. Prove that the sequence {a,}, where o, is the nth digit
of an arbitrarily chosen irrational number, cannot be monotonic.

1.17.39. Prove that if the sequence {a,/b,} (b, > 0) is monotonic,
then the sequence

{ aj+a,+ ... +a, }
by+by+ ...+ by,

will also be monotonic.

1.17.40. Prove the existence of limits of the following sequences
and find them.

@ Ve, Verz Veverve ...
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(b) x,=c"3y/nl (>0, k>0

(¢) x,=a,/n, where a, is the nth digit of the number m.

1.17.41. Prove that at an arbitrarily chosen x the sequence

{@} is bounded.

1.17.42. Prove that the sequence

{E(x)—;—E(Qx) ...+E (nx)}
n

has the limit x/2.

1.17.43. Prove that
lima®=1 (a>0).
h - 0

1.17.44. Given the function

_f I4-x for x=£0,
f(x)—{ 0 for x=0.
Prove that
lim f(x)= 1.

x -0

1.17.45. Let

P (x) = Quxt bt - Hay, (a, = O; bo e 0)'

boX™ + b, x" = - .. 4 b,
Prove that
oo, if n>m,
lim P(x)=/{ a,/b,, if n=m,
¥oe 0, if n<m.

1.17.46. Find the constants a and & from the condition:

(a) lim (ﬁtll—ax—b> =0;

X > ® x+
() lim () ¥—x+ 1 —ax—0b)=0.

1.17.47. Sketch the graphs of the following functions:

(a) [ (x)=lim |V T2 (x =0);

n—-» o

(b) f(x)= lim sin*x.

n-» o

1.17.48. Prove that
lim [(14x) (1423 (142 ... (1 432"} =

n—-> ®

1
l—x

(x1 <.
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1.17.49. Can one replace infinitesimal summands by equivalent
infinitesimals in computing a limit?

1.17.50. Determine the order of smallness of the chord of an
infinitely small circular arc relative to the sagitta of the same arc.

1.17.51. Determine the order of smallness of the difference of the
perimeters of an inscribed and circumscribed regular n-gons rela-
tive to an infinitely small side of the inscribed n-gon.

1.17.52. The volumetric expansion coefficient of a body is con-
sidered to be approximately equal to the triple coefficient of linear
expansion. On equivalence of what infinitesimals is it based?

1.17.53. Does the relation log(l +x) ~ x hold true as x— 0?

1.17.54. Will the sum of two functions f(x)-g(x) be necessarily
discontinuous at a given point x, if:

(a) the function f(x) is continuous and the function g(x) is dis-
continuous at x=x,,

(b) both functions are discontinuous at x = x,? Give some examples.

1.17.55. Is the product of two functions f(x)g(x) nccessarily
discontinuous at a given point x, if:

(a) the function f(x) is continuous and the function g(x) is dis-
continuous at this point;

(b) both functions f(x) and g(x) are discontinuous at x= x,?

Give some examples.

1.17.56. Can one assert that the square of a discontinuous func-
tion is also a discontinuous function? Give an example of a func-
tion discontinuous everywhere whose square is a continuous function.

1.17.57. Determine the points of discontinuity of the following
functions and investigate the character of these points if:
1

(a) [(x) =T waown’

(b) f(x):2_2l/(l—x);

(c) @ (x)=x[1—2h(x)], where A(x) is the Dirichlet function (see
Problem 1.14.4 (b)).

1.17.58. Test the following lunctions for continuity and sketch
their graphs:

(a) y=x—E (x);

(b) y=x*+E (x*);

(© y=(=1F;

(d) y= lim

n - o

S
14+ (2sin x)2n°
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1.17.59. Investigate the functions f[g (x)] and g[f(x)] for conti-
nuity if f(x) =signx and g(x) =x(1—x2).
1.17.60. Prove that the function
2x at —1<C<x <0,
f(x):{ x+1, at 0<x<1

is discontinuous at the point x=0 and nonetheless has both maxi-
mum and minimum values on [—I1, 1].

1.17.61. Given the function

(x—|—l)2 /lxl+1/%) jif x=£0,
flx) = if x=0.

Ascertain that on the interval [—2, 2] the function takes on
all intermediate values from f(—2) to f(2) although it is discon-
tinuous (at what point?).

1.17.62. Prove that if the function f(x): (1) is defined and mo-
notonic on the interval [a, b]; (2) traverses all intermediate values
between f(a) and f(b), then it is continuous on the interval [a, b].

1.17.63. Let the function y=f(x) be continuous on the interval
[a, b], its range being the same interval a<Cy<Cb. Prove that on
this closed interval there exists at least one point x such that
f (x) =x. Explain this geometrically.

1.17.64. Prove that if the function f(x) is continuous on the
interval (a, b) and x,, x,, ..., x, are any values from this open
interval, then we can find among them a number § such that

FE = [F () +F )+ o+ F ()]

1.17.65. Prove that the equation x 2¥=1 has at least one posi-
tive root which is less than unity.

1.17.66. Prove that if a polynomial of an even degree attains at
least one value the sign of which is opposite to that of the coeffi-
cient at the superior power of x of the polynomial, then the latter
has at least two real roots.

1.17.67. Prove that the inverse of the discontinuous function
y=(1+x*) sign x is a continuous function.

4_3148



Chapter 2

DIFFERENTIATION
OF FUNCTIONS

§ 2.1. Definition of the Derivative

The derivative [’ (x) of the function y=/f(x) at a given point x
is defined by the equality

/ By [ A% —T (%)
! (x)__AlxlriloE_AlxlTo—T
If this limit is finite, then the function f(x) is called differen-
tiable at the point x; and it is infallibly continuous at this point.
Geometrically, the value of the derivative f’(x) represents the
slope of the line tangent to the graph of the function y=f(x) at
the point x.
The number

’ i A -
£ (x)=Axl}>n}a-0 f e+ AJ;) f )
is called the right-side derivative at the point x
The number
‘)= lim L[&¢+80—/x)
f (x) Ame—O Ax
is called the left-side derivative at the point x.

The necessary and sufficient condition for the existence of the
derivative f’'(x) is the existence of the finite right- and left-side
derivatives, and also of the equality f_ (x)=7F (x).

If ' (x)=o0, the function f(x) is said to have an infinite deri-
vative at the point x. In this case the line tangent to the graph
of the function y=f(x) at the point x is perpendicular to the
x-axis.

2.1.1, Find the increment Ay and the ratio ﬁ_}yc for the following
functions:
(@) y=Vx at x=0 and Ax=0.0001;

(b) y:ri__ﬁ at x=1 and Ax—=0.2.
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Solution. (a) Ay=} x+ Ax—V x =}/0.0001 =0.01;

Ay 0.0l
Ax—0.0001 = 100.

2.1.2. Using the definition of the derivative, find the derivatives
of the following functions:

(@) y=cosax; (b) y=>5x*—2x.

Solution. (a) Ay=cosa (x- Ax)—cos ax =

=— 2sin (ax-l—%Ax) sin % x;
. a .. a
Ay —2sin ( ax—l——2— Ax)sm—Q- Ax .
Ax Ax ’
Ay sin 2 Ax

= lim Z=—2 lim sin a ) lim = — asin ax.

y= Ax - 0 DX Ax > 0 ax+2Ax ax -0 Ax

In partlcular, if a=1, then y=cosx and y' =—sinx.

2.1.3. Show that the following functions have no finite derivati-
ves at the indicated points:

(@) y=y/ x* at the point x=0;
(b) y=3 x—1 at the point x=1;
() y=3|x|+1 at the point x=0.
Solution. (a) Ay= f/(x—i— Ax)“—ir’/}?.
R 5/ %7
At x=0we have Ay= 3/ A3, %=I/A"‘a =

= J/A —; hence, y" (0) = A,ltlTO i’/— = o0, —1, .

i.e. there is no finite derivative. Fig. 3
(c) At Ax>0 the increment of the func- ig. 34

tion Ay atx=0 will be: Ay=3 (0+Ax)4+1—1=3Ax. Therefore

~ .

Ay
lim Z=3.
Ax —~ +0A

At Ax <0 the increment of the function Ay will be

Ay=—30+Ax)+1—1=—3Ayx,
hence,
lim Ay =—3
Ax - -0 Ax *
Since the one-sided limits are different, there is no derivative at
the point x=0 (see Fig. 34).

4*
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2.1.4. Investigate the function y=|Inx| for differentiability at
the point x=1.
Solution. At x=1

Ay=|In(14Ax)|—|In1|=]In(14 Ax)],

i. e.
B _ 1n(1—|—Ax) at Ax>0»
Ay_|ln(1—l-Ax)|—{_1n(1_|_Ax) at Ax<0.
Therefore
In (14 Ax)
A_y__{T at Ax >0,
Ax In (14-Ax)
— at Ax <0,
whence
. Ay i A_y_ —_
Axlini OE‘_ +1 and Axl-l»nl o2 .

Since the one-sided limits are different, there is no derivative.
Hence, the function y=|Inx| is not differentiable at the point
x=1 (see Fig. 35).

2.1.5. Find the average velocity of
motion specified by the formula

s=(?—5t+2) m
from ¢, =5 sec to £,=15 sec.
2.1.6. Using the definition of the
derivative, find the derivatives of

the following functions:
Fig. 35 (@) y=x% (b) y=1/x%

2.1.7. Investigate the function y=|cosx| for differentiability at
the points x=m/2+4 nn (n an integer).

§ 2.2. Differentiation of Explicit Functions

1. Basic Rules of Differentiation

(1) ¢’ =0;

(2) o) =u" v,

3) (cu) =cu’;

(4) (uv)’=u’0—i—uvl’, the product rule;

®) (%) — 4 (1, 4 0), the quotient rule.

v2

Here ¢=const, and « and v are functions of x which have deri-
vatives at a corresponding point.

(6) If the function u=¢ (x) is differentiable at the point x,, and
the function y=f(u) is differentiable at the point u,=¢ (x,), then
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the composite function y={f (¢ (x)) is differentiable at the point x,
and yy (x,) = y,, (&,) uy (x,), the function of a function, or chain, rule.

I1. Differentiation of Basic Elementary Functions
(1) (@)Y =nu""w'; (2) (sinu) =cosu-u’;

3) (cosu)':—sinu u';
(4) (tanu) = Cosz (5) (cot u)’ =— g
(6) (Inw) =2

) (a”)’:a" Ina-u’; 8) (e") =e“u’;
(9) (sinhu) =coshu-u’;
(10) (cosh w)’ :smhu u

(11) (arcsinu)' = =—(arc cos u)";

Vl
+u

(12) (arc tanu)’ =~———=— (arccot u)’.

2.2.1. Find y', if:
(@) y=>5x*/3— 3x5/2 +2x73

(b) y=?/‘.’x_2 /x

(a, b constants).

Solution. (a) y =5- x2/3 1 3~%x5/2 1_9.3¢-om1=_10
3 |/ X
15 - 6
—*2-JC X— x4
2.2.2. Find ¢’, if:
N S __sinx-4-cosx,
(a) y=3cosx+2sinx; (b) Y= Grr—eoss
(c) y=(*+1)arctanx; (d) y==x*arcsinx.
Solution. (a) Yy’ =3 (cosx)’+2(sinx) =— 3sinx+2cos x;
(b ,  (sin x4 cos x)’ (sin x— cos x) — (sin x— cos x)’ (sin x+cosx)
)y = (sin x— cos x)?2
(cos x — sin x) (sin x— cos x) — (cos x - sin x) (sin x4 cos x)
(sin x— cos x)?
—_— 2 .
" (sinx—cosx)?’
(d) y" = (x*)" arcsin x+ (arc sin x)’ x* = 3x% arc sin x+V+3; .
—x

2.2.3. Find the derivative of the given function and then com-
pute the particular value of the derivative at the indicated value
of the argument:

@) f(x)=1—3 X+ 16/x at x=—328;
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(b) f(x)=(1—Vx)*/x at x=0.01;
(c) f(t)=(cost)/(1—sint) at t =n/6.

Solution. (a) f,(x):—%x-l/3_16x~2:_3 ;/;__1725
Putting x =— 8, we obtain
’ 2 16 _ 1.
8=t

r o —sint (1—sin {)+cos?¢ 1
© F@= (I—sin{)® =T—sini"

Whence f’ (11/6) =

2.2.4. Taking advantage of the differentiation formulas, find the
derivatives of the following functions:

Ztrtl, vy
(C) !/ x+1 1) (d) y—x_2(‘i/x‘r

cos Q-+ sin @ o '
© ¥="T—wsq (f) y=2¢*+1Inx;
(@ y=es(cosxt sin); () y=Stnx

2.2.5. Taking advantage of the rule for differentiation of a com-
posite function find the derivatives of the following functions:

(a) y=sin®x; (b) y=Intanx; (c) y=5cosx;

(d) y=Insin(x*+1); (e) y=arcsin ) 1—x;

(f) y=1In® (tan 3x); (g) y=sin? ) 1)(1—x).

Solution. (a) Here the role of the external function is played by
the power function: sin x is raised to the third power. Differentiating

this power function with respect to the intermediate argument
(sin x), we obtain

(SIN® X)sin x = 3 sin? X;
but the intermediate argument sinx is a function of an independent
variable x; therefore we have to multiply the obtained result by

the derivative of sinx with respect to the independent variable x.
Thus, we obtain

Y = (SIN® X)sin x (5in x)}; = 3 sin? x cos x;

I

tan xcos?2x  sin2x’

C) yr = (55 *)cos , (COS X), =55 * In § (— sin x) = — 5o *sin x In 5;
Y

(b) !/,; = (11’1 tan x)tan x (tan X); =
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(d) ge=[Insin (x*+ D)]sin oos 1) [SIN (63 4 Doy [¥24 1] =
=S - 08 (¢ + 1)-3x* = 3xcot (x* + 1);
0 4= e sin /T s (VT (1=
1 1 _x
Ve (—2x) = N VT——x'* (x==0).
2.2.6. Find the derivatives of the following functions:
(a) y=(143x+5x2)% (b) y=(3—sinx)%
(©) y=y/sin*x+ 1/cos? x;
(d) y=3/ 252" F 1+ 1n°x;
(e) y=sin 3x +cos (x/5) + tan J x;
(f) y =sin (x* —5x+ 1)+ tan (a/x);
(g) y=arccos Vx;
(h) y==arctan(Inx) - In(arc tan x);
(i) y=In*arc tan (x/3);

W=V iV iV

Solution. (a) y’' =4 (1 4+ 3x45x2)% (1 4 3x+45x%)" =
=4 (1 4+3x45x%)% (3 + 10x);
1 1

(g)!/:_l/ (l/x)l(l/ ) - ]/I—xQVx_—2V-x(l—x);

0) y'=mm[‘+2m+w<l+zh>]'

2.2.7. Find the derivative of the function

y—arCSmH_xz

We have

2(1+x2)——4x- 2 (1—x?) 2 (1—x?)

y :l/"l__( 2 >2 A+ Y U—x) (1+1?) TIT=2[0 %) ?
- x'.f

i.e.

2
, m—z at I)C|<1,
y.:

at || > L.

2
TR
At |x| =1 the derivative is non-existent.

2.2.8. Find the derivatives of the following functions:
(a) y=sinh bx cosh (x/3);
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(b) y=-coth (tan x) —tanh (cot x);
(c) y=arccos (tanh x) 4-sinh (sin 6x);
(d) y=sinh?x®- cosh® x?;
gSinh ax
©) Y=o —con s’
Solution.

() y'=(sinh5x)’ cosh %—I— sinh 5x (cosh %>' =

= 5 cosh 5xcoshi+-;7 sinh 5xsinh—§,

(©) y'= ——Vm_xl———_——i—cosh (sin 6x) (sin 6x)" =

1/cosh2 x
V (cosh? x—sinh? x) /cosh? x

-+ 6 cos 6x cosh (sin 6x) = — ﬁ ~+ 6 cos 6x cosh (sin 6x).

2.2.9. Find the derivatives of the following functions:
_ X3 (1), _ vx) .
(a) y= 75’?— (b) y=[u ()] (u(x)>0)
(c) y= i/-)c2 7 _: 5 Sin® x cos? x;
(d) y=(Vtanx)*"".
Solution. (a) Apply the method of logarithmic differentiation.
Consider, instead of y, the function
183102+ -H)
Vsl
Taking into account that (ln[u] Y =u'/u, we have
1 1 _ —24x34-125x — 14x+75
_‘x'+3(x2+|)+15(5—-x)— 15x(x2 1) (5—x)
But z’=(In|y|) =y'/y, whence
3

3
z=Inly|=1In _ln|x|—|——ln(x2—|—l)——ln|5 x|

Pyl EEED) | 2604 1250 — x4 T5
y=yz= Y= 5x (2 )5 —7)

(b) Suppose the functions u (x) and v(x) have derivatives in the
given domain of definition. Then the function

z=Iny=vlnu

also has a derivative in this domain, and

z'=(vlnu)’=v’lnu—[—vu—;.
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Hence, the function
y= elny —- gz

also has a derivative in the indicated domain, and
Yy =e2' =yz'.
Thus,
Yy =u’ (v’ Inu-+ v%) =ou’ " +u?lnu-v’.

2.2.10. Show that the function y= xe—**/? satisfies the equation

xy'=(1—x?)y.
Solution.
y' —e— X2 x20-%%2 — p—x*/2 (1 _xz);
xy' = xe=*72 (1 —x?).
Hence,
xy =y (1—x?).

2.2.11. Show that the function y=xe~* satisfies the equation
xy' =(1—x)y.
2.2.12. Investigate the following functions for differentiability:

(a) y=aresin (cosx); (b) y=]/1—l/1—x2.

Solution. (a) y' = (cosx)’ _ __sinx _ __sinx
’ V 1—cos2x Vsintx | sinx| °
Hence, y’=—1 at points where sinx > 0; y’=1 at points where

sinx < 0. At points where sinx=0, i.e. at the points x=kn
(=0, =1, £2, ...) the function, though continuous, is not dif-
ferentiable.

(b) The domain of definition of this function is the interval
—1<<x< 1

Yy

1 —1
V1 Viewe 2VIi—x

As x—1—0 or x——1+40 we have y'— +oo. Let us find
out whether the derivative y’ exists at the point x=0, i.e. whe-

4

= (—2x) at x=£0 and x5 + 1.

ther lim Yl'—‘:l_—éﬁ exists.
Ax -0 X

Since V' T—Ax®—1 ~——% Ax?, then
. 1
| N —= as A)C-—>—|—0,

 VIi—VT=ae . V’z‘A”'_ 2

Ahmo Ax = li o Ax — L as Ax——0.

X - Ax—> V-2
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Thus, y_ (0) ==y, (0), which means that the function under consi-
deration has no derivative at the point x=0, though it is conti-
nuous at this point.

Note. There are cases of failure of existence of f’(x) and even of
fi(x) and f_ (x) at a given point, i.e. when the graph of the func-
tion has neither a right-, nor a left-side tangent at the given point.
For instance, the function

[ xsin(l/x) at x==0,

T =10 at x=0
is continuous at the point x=0, but does not have even one-sided
derivatives, since AQS‘) =sin /ﬁ.

2.2.13. Find the derivatives of the following functions:
(a) f(x)=sinh (x/2)+ cosh (x/2);

(b) f(x)=1In[coshx]; (c) f(x)=2) coshx—1;

(d) f(x)= arcsin [tanh x];

(e) f(x)=V1+sinh?4yx;

(f) f(x) =e* (cosh bx+ sinh bx).

2.2.14. Applying logarithmic differentiation find the derivatives
of the following functions:

sin x. = i W
(@) y=(cosx)sn*, (b) y= 1/1—sin3x’
(©) y=3 "‘—Vi_l '
‘/(x+2)2 V{x+ 38
2.2.15.
cos?x |
fO) = =mes
show that

f (m/4)—3[" (n/4) =3.
2.2.16. Show that the function

x—e—x*
y= o2

satisfies the differential equation
xy' +2y=e"*.
2.2.17. Find the derivatives of the following functions:
(a) y=Incos) arcsin3d-2° (x> 0);
(b) y= ¥/ arc tan +/ cos In® x.
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§ 2.3. Successive Differentiation of Explicit Functions.
Leibniz Formula

If the derivative of the (n—1)th order of a function y=F(x) is
already found, then the derivative of the nth order is determined
by the equality

Y (@) =[5 ()"

In particular, y" (x)=[y (x)]’, ¥’ (x)=[y" (x)]’, and so on.

If u and v are functions differentiable n times, then for their
linear combination c,u-c,v (c,, ¢, constants) we have the following
formula:

(clu + sz)(") — clu‘"‘ -+ 020(”),

and for their product uv the Leibniz formula (or rule)

(u0)™ = u™y 4 pun= vy’ +n (;’; D) w2y |
n
+ . Fum = kzocﬁu(n—k)vfk),
n(n—1)...(n—k+1)__  n

dare

0 _ (0) — k =
where u®=u, v =v and C} 53R =R

binomial coefficients. Here are the basic formulas:
() ™ =m(@m—1)...(m—n-+1)xm""
(2) (@®)=a*In"a(a > 0). In particular, (e¥)" =e-*.
(3) (Inx)m =(—1r @=L
(4) (sinx)" =sin (x4 nn/2).
(5) (cos x)'™ = cos (x -+ nmw/2).

2.3.1. Find the derivatives of the nth order of the following
functions:

(a) y=1Inx; (b) y=¢€**; (c) y=sinx; (d) y=sinbxcoslx;
(e) y=sinxcosx; (f) y=sin3xcostx; (g) y=In(x*+x—2).
Solution.

(@) y’=%=x"; Y'=(—x"% y"'=12x"%

y=—1-2.3x74% ...; gy =(—Dr"1(n—1)! x‘"=(—_—ll,-l-_%:l—)’ .
(c) y" =cosx=sin (x+mn/2);
Y =cos (x4 m/2) =sin (x + 21/2).

In general, if we assume that for a given n=~%&

y*® =sin (x—[—k %) ,
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then it will turn out that
y*+ =cos (x—l—k%) =sin [(k—l— 1)—’;—+xJ .

Whence, by virtue of mathematical induction we conclude that for
any natural n

y'"™ =sin (x—}—n%).
(d) y=sinbxcos 2x=—;— [sin 7x+ sin Sx] .
Therefore
1 . .
y‘"’:-? [7" sin <7x+n%> -+ 3"sin (3x+ n%)] .
, 2 1
® v =xT_Tt1;__—2
To simplify the computations let us transform the obtained
function:
r__ 241 (x+2)+(x—1) 1 - -
T x—2  (x—1)(x+2) x—l+x+2 (=17 4+ (e +2)7

Whence

y=—lix—1)72=1(x+2)"%
y'=12x—1)3+1.2(x+2)"3

.................

yP=(—hrt(n—DI{(x—1D)""4+(x+2)""]=
—(__1\n— — 1! ! I - l
_( l) 1(}1 1) l(x——l)” '*—(x_i_z)n] .
2.3.2. y=2TC find yo.

cx +d’
Solution. Transform the given expression in the following way:
_ax-+tb a bc—ad _a
_cx+d—c+c(cx+d) + (x +d).
Whence

y'=(—1>”—c—$—"i’c<cx+d)-2,

y"=<—1><—2>”iﬂ’c‘= (cx-Hd)?,

Y =(=1)(—=2) (—3 E=X “ s (ex+d)s,
Yy = (—1)"n! _adc”(cx—i—d)“'”'” —_

nlcn—
ad).

=(=1)" Wﬁ (be —
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2.3.3. y=x/(x*—1); find y'».
Solution. Transform the given expression

X

17 1 1
Vy=m=i=7 [m+m] '
therefore (see Problem 2.3.2):
w_ (=Dnal | 1
y( ‘= 2 [(x+ 1)n+l—I (x—-l)”‘”] ¢

2.3.4. Using the Leibniz formula, find the derivatives of the
indicated orders for the following functions:

(@) y=x%sinx; find y®*;

(b) y=e*(x*—1); find y®*;

() y=e**sinPx; find y».

Solution. (a) y*® = (sin x-x?)?® = (sin x)@» x2 4- 25 (sin x)@¥ (x2)" -

25.2 ” .
—}———4(smx)‘23’ (x?)", since the subsequent summands equal zero.

Therefore
y? = x? sin (x—|-25 %) -+ 50x sin (x+24 g) -+ 600 sin (x—l— 23 %) =
= (x*—600) cos x + 50x sin x.
2.3.5. Compute the value of the nth derivative of the function
3x--2 .
at the point x=0.

=73

Solution. By hypothesis we have y (x) (x2—2x-+5)=3x+42. Let
us differentiate this identity n times using the Leibniz formula;
then (for n >2) we obtain

§ () (62— 20+ 5) 4 gD (x) (25— 2) + LEZD yu=w (). 2 0,

Putting x=0, we have
5y'™ (0)—2ny*~1 (0)+n (n—1) y"~% (0) =0
Whence
g (0)=% (=1 (0) — n(n—1) y'*= 2 (0).

We have obtained a recurrence relation for determining the nth
derivative at the point x=0(n>2). The values y(0) and y'(0)
are found immediately: y(0) =2/5;
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, —3x2—4x+19 P 19
V= —m—mre: s YV O=g

Then, successively putting n=2, 3, 4, ..., find the values of
the derivatives of higher orders with the aid of the recurrence
relation.

For example,

" 2 19 2.1 2 56
yO=%5-25—% 5=m
"oy 2 56 3.2 19 234

V'O =53 %% %= "

2.3.6. Find the derivatives of the second order of the following

functions:
arc sin x

@ y=xV T+ ) y=ym—s; @ y=e.

2.3.7. Given the function
Y= c,e** fc,xe** | e*.
Show that this function satisfies the equation
Yy —4y' +4y=e*.

2.3.8. Using the Leibniz formula give the derivatives of the in-
dicated orders for the following functions:

(a) y=x*sinx; find y©”;

(b) y=e*sinux; find y'"’;

) y=e*(3x*—4);  find y";

(d) y=(1—x?) cosx; find y*m.

2.3.9. Using the expansion into a linear combination of simpler
functions find the derivatives of the 100th order of the functions:

1

I
@) y=m—r7s: 0 y= =

Vi—x'
2.3.10. Show that the function
y=x"[c, cos (Inx)+c,sin(In x)]
(., ¢,, n constants) satisfies the equation
x2y" +(1—2n) xy’ + (1 +n?) y=0.
2.3.11. Prove that if f(x) has a derivative of the nth order, then
[F (@x+0)]'" = @'} (ax-+b).



§ 2.4. Inverse, Implicit and Parametrically Represented Functions 111

§ 2.4. Differentiation of Inverse, Implicit and Parametri-
cally Represented Functions

1. The Derivative of an Inverse Function. If a differentiable
function y={(x), a<<x < b has a single-valued continuous inverse
function x=g(y) and y,==0 then there exists also

xy=L'
Yx

For the derivative of the second order we have
Yxx
ux)?®

2. The Derivative of an Implicit Function. If a differentiable
function y=y(x) satisfies the equation F (x, y)=0, then we have
to differentiate it with respect to x, considering y as a function

of x, and solve the obtained equation (%F(x, y)=0 with respect
to y,. To find y,, the equation should be twice differentiated with
respect to x, and so on.
3. The Derivative of a Function Represented Parametrically. If
the system of equations
x=¢ (), y=v (@), a <t <p,

where ¢ (¢f) and ¢ (¢f) are differentiable functions and ¢’ (f) 0.
defines y as a single-valued continuous function of x, then there
exists a derivative y, and

Xyy= —

L) _ gt
AT
The derivatives of higher orders are computed successively:

=—(y"?' , y;;’x=(——y"’i)’, and so on.
Xt Xt

Yix

In particular, for the second derivative the following formula is
true:
” Xt Yit —Xtt Yt
Yor =*
2.4.1. For the function
(@) y=2x*4+3x"+x find x,;
(b) y=3x—(cosx)/2; find xy,
(c) y= x+e5 find xj,.
Solution. (a) We have y,=6x2-+ 15x*+4 1, hence,
1 1

=—=so5—raT
A T R |7 R
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() y.=1+4¢*, y,.,=e*, hence,
= 1 .o ex
YT T4ex> xyy__(|+ex)3 .

2.4.2. Using the rule for differentiation of an inverse function,
find the derivative y, for the following functions:

@@ y=y % (b) y=arcsinV'x; (¢) y=InV 1+ 2.
Solution. (a) The inverse function x=y* has the derivative
x,=3y?. Hence,
1 1 1
AR T
(c) At x>0 the inverse function x=}/e¥ —1 has the derivative
x,=e>/l/ ey —1. Hence,
I _Ve—1_ V£ X

yx:;; Ny (e

2.4.3. For each of the following functions represented paramet-
rically find the derivative of the first order of y with respect to x:

(@) x=a(—sint), y=a(l—cos?t);

(b) x="rksint—-sinkt, y=kcosi+tcoskt;

() x=2Incot ¢, y=tant+4cott;

(d) x=e“, y=e“.

Solution. (a) Find the derivatives of x and y with respect to the
parameter £:

x;=a(l—cost); yi=asint.

Whence
Q——M~—cott—(t:#2kn)
dx~ a(l—cost) 2 :
© dx _—2cosec®t 4
dt™—  cott ~  sin2{?
dy ., 24 4cos2t,
2 = Sec t—cosec t———————sin22t ;

dy 4cos2tsin2f kn

2.4.4. The functions are defined parametrically:

(@) (x=acos?t, (b) (x=1¢t43t+1,
{y:bsinat; {y=t3—3t+1;

() [x=a(cost+tsint), (d) [x=e'cost,
{y:a(sint—tcost); {y=e’sint.

Find for them the second derivative of y with respect to x.
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Solution. (a) First find y.

y;=3bsin*fcost; x;=—3acos?tsint;
3b sin? £ cos ¢

. b n
Vo= ~reostrami= — g tant (t# @+ DT).

Then we shall find y,, using the formula

(yx)t
Y= __x_?_ )
Xt
where
’yo b
(yx)t = - 37
acos?t
Whence
b b

Yux =~ cos?{ (—3a cos? 7 sin /)~ 3a?cost/sint’
(d) x;=e'cost—e!sint=e! (cost—sint);
yr=etsint 4etcost =e! (cost-sint);
,_cosi+sint
*"cost—sint’
cos {+sin ¢\’
A <cost——sin t>1 2
Yor = x;  el(cost—sint) ot (cos {—sin £)3’

2.4.5. Find g,

(a) x=e"%, y=t% (b) x=sect; y=tant.
Solution. (a) First find
xy=—e"t y;=31t,

whence
Y, = — 3t2/e~t = — 3e't2.
Then find the second derivative
. (g —(Belt2+6tel)
o= '—xT =T —e-t

= 3te (1 +2).

And finally, find the third derivative
et _ 3 24 F2AF __ gost (124 344 1),

Xt —e—t

[
!/X\’X -

2.4.6. Find the derivative gy, of the following implicit functions:

(@) ¥*4xy+y*=0; (b) Inx+te ¥*=g
(c) ¥*+y*—4x—10y+4==0;
(d) Xs 4 ytls = a’ls.

Solution. (a) Differentiate with respect to x, considering y as

a function of x; we get:
3x2 4 2xy + x*y’ +-2yy’ =0.
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Solving this equation with respect to g’ find

s 3x%4-2xy
¥ =""7y

2.4.7. Find y,, if:
(a) arctan y—y+x=0; (b) e*—e’ =y—x;
(c) x+y=e*"7.

Solution. (a) Differentiate with respect to x, considering y as a
function of x and determine y':

’ , R -
ﬁy_—?—y +1=0, whence y' = _;ly =y *41.
Differentiate once again with respect to x:
y'=—297"y"
Substituting the value of y’ thus found, we finally get
204+
XX y5 .

2.4.8. Find the value of y" at the point x=1 if
23 —2x2y*+5x+y—5=0 and y|,_,=1.
Solution. Differentiating with respect to x, we find that
3x?—4xy*—4x*yy’ +5-+y =0.
Putting x=1 and y =1, obtain the value of y" at x=1:
3—4—4y +5+y =0, y =4/3.
Differentiate once again with respect to x:
6x—4y* —8xyy’ —8xyy’ — 4x?y"* —4x*yy” +y" =0.
Putting x=1; y==1 and y’' =4/3, find the value y" at x=-1:

64 64 ” " 22

2.4.9. Find y, for the following implicit functions:

(@) x+Vxy+y=a; (b) arctan(y/x)=In) x>+ ¢

(c) e¥siny—e™Y cosx =0;

(d) e +xy=e; find y, at the point (0, 1).

2.4.10. Find y;, of the following implicit functions:

(a) y=x-tarctany,

(b) x24+-5xy+y*—2x+y—6=0; find y" at the point (I, 1).
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2.4.11. For each of the following functions represented parame-
trically find the indicated derivatives:

asin ¢ ccost

(a) X = {Tpeost’ Y=TTbcost’ find yi;

(b) x=In(14¢?), y=t—arctant; find yy

() x=+2, y=1/3—1, find gy,
(d) x=e-?t, y=arc tan (2t 4 1); find yj;
(€) x=4tan?(¢/2), y=asint4bcost; find y,
(f) x =arcsin (#2—1), y=arccos?2t,; find yy;
(g) x=arcsint, y=V1—t find ¢,

2.4.12. Show that the function y=f(x), defined by the parametric
equations x=e!sint, y=e'cost, satisfies the relation y"(x+y)? ==
=2(xy’ —y)-

§ 2.5. Applications of the Derivative

The equation of a line tangent to the curve of a differentiable
function y=y(x) at a point M (x,, y,), where y,=y(x,), has the
form

Y— Yo=Y (%) (X —%,)-

A straight line passing through the point of contact perpendicu-
larly to the tangent line is called the normal to the curve. The
equation of the normal at the
point M will be

I
Y—Y,= y' (*0) (x )Co),

Yy’ (x,) # 0.

The segments AT, AN are
called the subtangent and the
subnormal, respectively; and the 77T A v
lengths MT and MN are the Fie. 36
so-called segment of the tangent &
and the segment of the normal,

respectively (see Fig. 36). The lengths of the four indicated segments
are expressed by the following formulas:

AT =|&|; AN <y MT =|L|VTFE

MN =y |V TGP

2.5.1. Write the equations of the tangent line and the normal:
(a) to the curve y==x*—3x-+42 at the point. (2, 4);
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(b) to the parabola y =2x*—x-+5 at x=—0.5;
(c) to the curve y=x*+3x2—16 at the points of intersection
with the parabola y=3x2.

Solution. (a) Find the derivative at the point x=2:
y' =3x—3, y (2)=9.
The equation of the tangent line has the following form:
y—4=9(x—2) or 9x—y—14=0.
The equation of the normal is of the form:

y—4 =—31(x—2) or x-+9y—38=0.

(c) Solving the system of equations
{ y=x*43x2—16,
y=3x%
we shall find the points of intersection of the curves
n=—2 x,=2, y=y,=12.
Now we find the derivatives at the points x=—2 and x=2:
Yy =4x*+6x, Yy (—2)=—44, y (2)=44.
Therefore, the equations of the tangent lines have the form
y—12=—44(x+2), y—12--44(x—2).
The equations of the normals have the form

1 1
y—12=‘-ﬁ(x+2), y——lQ:—n(x—2).

2.5.2. Find the points on the curve y=x*—3x-+5 at which the
tangent line:

(a) is parallel to the straight line y=— 2x;

(b) is perpendicular to the straight line y =—x/9;

(c) forms an angle of 45° with the positive direction of the x-axis.

Solution. To find the required points we take into consideration
that at the point of tangency the slope of the tangent is equal to
the derivative y’ =3x*—3 computed at this point.

(a) By the condition of parallelism

3x2—3=—2,
whence x, =—1/)/"3, x,= 1/} 3. The required points are:

M,(— V3, 5+8V39), M,(11V3, 5—8)/3)9).
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(b) By the condition of perpendicularity
3x2—3=9,
whence x, = — 2, x,= 2. The required points: M, (—2, 3), M, (2, 7).

2.5.3. Find the angles at which the following lines intersect:

(a) the straight line y=4—x and the parabola y =4—x?/2;

(b) the sinusoid y=sinx and the cosine curve y==cosx.

Solution. (a) Recall that the angle between two curves at the point
of their intersection is defined as the angle formed by the lines tan-
gent to these curves and drawn at this point. Find the points of
intersection of the curves by solving the system of equations

{ y=4—x,
y=4—x2.
Whence

M, (0, 4); M,(2, 2).

Determine then the slopes of the lines tangent to the parabola at
the points M, and M,:

y(0)=0, ¥y @2)=—2.

The slope of a straight line is constant for all its points; in our
case it equals —1. Finally, determine

the angle between the two straight It
lines:

tang,=1; ¢, =45% K

_—1+2_ 1. M
tang,=—73 =73 |
l o o
Py = arC tan 3 ~ 18.5 . 7 11:0 T Z
2.5.4. Prove that the segment of Fig. 37

the tangent to the hyperbola y=c/x
which is contained between the coordinate axes is bisected at the
point of tangency.

Solution. We have y’ =—c/x?, hence, the value of the subtangent
for the tangent at the point M (x,, y,) will be

Y
l?l=lxo|v

i.e. Ox,=x,T (Fig. 37), which completes the proof.

Whence follows a simple method of constructing a tangent to the
hyperbola y=c/x: lay off the x-intercept OT =2x,. Then MT will
be the desired tangent.
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2.5.5. Prove that the ordinate of the catenary y=acosh (x/a) is
the geometric mean of the length of the normal and the quantity a.
Solution. Compute the length of the normal. Since

y’ =sinh (x/a),
the length of the normal will be
MN =|y|V T+ (g} = yV T+ sinh® (x/a) = y cosh (x/a) = y*/a,
whence y*—=a-MN, and y=) a-MN, which completes the proof.
2.5.6. Find the slope of the tangent to the curve

[x=143t—8,
| y=22—2t —5

at the point M (2, —1).

Solution. First determine the value of ¢ corresponding to the gi-
ven values of x and y. This value must simultaneously satisfy the
two equations

[ 243t—8=2

| 22 —2t—5=—
The roots of the first equation are {,=2; {,=—2>5, the roots of the
second equation f,=2; ¢{,=— 1. Hence, to the given point there

corresponds the value ¢=2. Now determine the value of the deri-
vative at the point M:

Yt 4 —2 6
s =( ,) = (378 )ia= 7
And so, the slope of the tangent at the point M (2, —1) is equal
to 6/7.

2.5.7. Prove that the tangent to the lemniscate o =a)/ cos20at
the point corresponding to the value 0,=m/6 is parallel to the x-axis.
Solution. Write in the parametric form the equation of the lem-
niscate:
x=pcos®=a}/ cos20eos0,

y=psin6=a}/ cos20sin 6.

Whence
. a cos 0 sin 20 —
Xg=— ————al/ cos 20 sin 0,
0 V cos 26 ‘/
. a sin 0 sin 20
Yo =— —F————+a V c0s 20 cos 0
V “cos 260

xo(n/6)=—al 2,  ye(n/6) =0
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Yo (71/6)
% (71/6)
the lemniscate at the point with 8,=n/6 and p,=a) cos26, =
=a/)/ 2 is parallel to the x-axis.

Thus, the slope &=

=0. Consequently, the line tangent to

2.5.8. Find the equations of the tangent and the normal to the
following curves:

(a) 4x® —3xy®+6x2—Sxy—8y*>+ 9x 4 14 =0 at the point (—2, 3);

(b) x®*+y>—2xy=0 at the point (1, 1).

Solution. (a) Differentiate the implicit function:

12x? —3y*—6xyy’ + 12x — 5y —5xy’ — 16yy” + 9 =0.
Substitute the coordinates of the point M (—2, 3):
48 —27 + 36y’ — 24— 15+ 10y’ —48y" + 9 =0;
whence
y' =—29/2.

Thus the equation of the tangent line is
y—3=—5 (x+2)
and the equation of the normal
y—3 =2 (x+2).

2.5.9. Through the point (2, 0), which does not belong to the
curve y=x* draw tangents to the latter.

Solution. Let (x,, x}) be the point of tangency; then the equation
of the tangent will be of the form:

y—xg=y" (x,) (x—x,)

y—x‘lo = 4)(,'3 (x—'xo)'

By hypothesis the desired tangent line passes through the point
(2, 0), hence, the coordinates of this point satisfy the equation of
the tangent line:

—x§=4x} (2—x,); 3xj—8x3=0,

whence x,=0; x,=8/3. Thus, there are two points of tangency:
M, (0, 0), M, (8/3, 4096/81).
Accordingly, the equations of the tangent lines will be

4096 2048 8
y=0, y—gr =77 \¥*—3
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2.5.10. f (x) = 3x®*— 15x% + bx—7. Find out at which of the points x
the rate of change of the function is minimal.

Solution. The rate of change of a function at a certain point is
equal to the derivative of the function at this point

f(x) = 15x* —45x2 15 = 15 [(x2 — 1/2) + 1]12].

The minimum value of [’ (x) is attained at x = +1/)/'2. Hence the
minimum rate of change of the function f(x) is at the point

x==41/)/'2 and equals 5/4.

2.5.11. A point is in motion along a cubic parabola 12y =x3.
Which of its coordinates changes faster?

Solution. Differentiating both members of the given equation with
respect to ¢ we get the relation between the rates of change of the
coordinates:

12y; =3x%-x;
or

yi_®
x 4
Hence,
(1) at —2 < x < 2 the ratio y;:x; is less than unity, i.e. the rate
of change of the ordinate is less than that of the abscissa;
(2) at x=+2 the ratio y;:x; is equal to unity, i.e. at these
points the rates of change of the coordinates are equal;
(3) at x <<~—2 or x> 2 the ratio y;:x; is greater than unity, i.e.
the rate of change of the ordinate exceeds that of the abscissa.

2.5.12. A body of mass 6g is in rectilinear motion according to
the law s=—14In(¢+ 1)+ ({+1)® (s is in centimetres and ¢, in
seconds). Find the kinetic energy (muv?/2) of the body one second
after it begins to move.

Solution. The velocity of motion is equal to the time derivative
of the distance:

, 1
U(t) =& =m+3(t+ 1)2.
Therefore

2 2
v(l)=12+ and %:%(12%) = 468 3 (erg).
2.5.13. The velocity of rectilinear motion of a body is proporti-
onal to the square root of the distance covered (s), (as, for example,
in free fall of a body). Prove that the body moves under the action
of a constant force.
Solution. By hypothesis we have

v=s;=al s (a=const);
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whence

SH=Ur=a S; =a?/2.

1
2V's
But according to Newton’s law the force

F =ksj, (k=const).
Hence,
F = ka?/2 = const.

2.5.14. A raft is pulled to the bank by means of a rope which
is wound on a drum, at a rate of 3 m/min. Determine the speed
of the raft at the moment when it is 25 m distant from the bank
if the drum is situated on the bank 4 m above water level.

Solution. Let s denote the length of the rope between the drum
and the raft and x the distance from the raft to the bank. By
hypothesis

§? = x4 4%

Differentiating this relation with respect to ¢, find the relation-
ship between their speeds:
2ss; = 2xx;,
whence

’ s
Xy = ¥ S¢e
Taking into consideration that

s;=3; x=25; s=)/252+ 4 ~ 25.3,
we obtain
= Y51 42
- 25

2.5.15. (a) Find the slope of the tangent to the cubic parabola
y =x* at the point x=1)/3/3.

(b) Write the equations of the tangents to the curve y=1/(1+ x2)
at the points of its intersection with the hyperbola y=1/(x+1).

(c) Write the equation of the normal to the parabola y=x244x--1
perpendicular to the line joining the origin of coordinates with the
vertex of the parabola.

(d) At what angle does the curve y=e* intersect the y-axis?

-3 &~ 3.03 (m/min).

2.5.16. The velocity of a body in rectilinear motion is determi-
ned by the formula v=3f-4¢>. What acceleration will the body
have 4 seconds after the start?

2.5.17. The law of rectilinear motion of a body with a mass of
100 kg is s=2¢>4-3t+ 1. Determine the kinetic energy (muv®/2) of
the body 5 seconds after the start.
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2.5.18. Show that if the law of motion of a body is s=ae'4-bet,
then its acceleration is numerically equal to the distance covered.

2.5.19. A body is thrown vertically with an initial velocity of
a m/sec. What altitude will it reach in ¢ seconds? Find the velocity
of the body. In how many seconds and at what distance from the
ground will the body reach the highest point?

2.5.20. Artificial satellites move round the Earth in elliptical
orbits. The distance r of a satellite from the centre of the Earth
as a function of time ¢ can be approximately expressed by the fo-
llowing equation:

82
r=a[1———scosM———2—(cos 2M—1)J

where M= ?g (t—t,)

t =time parameter

a =semi-major axis of the orbit

e =eccentricity of the orbit

P = period of orbiting

t,=time of passing the perigee? ty the salellite.
Here a, ¢, P and ¢, are constants.

Find the rate of change in the distance r from the satellite to the

centre of the Earth (i.e. find the so-called radial velocity of the
satellite).

§ 2.6. The Differential of a Function.
Application to Approximate Computations

If the increment Ay of the function y=/f(x) can be expressed as:

Ay=Ff(x+Ax)—f(x)=A4 (x) Ax+a (x, Ax) Ax,

where

lim a(x, Ax) =0,

Ax - 0
then such a function is called differentiable at the point x. The
principal linear part of this increment A (x)Ax is called the diffe-
rential and is denoted df (x) or dy. By definition, dx=Ax.

For the differential of the function y=f(x) to exist it is nece-

ssary and sufficient that there exist a finite derivative y'= A4 (x).
The differential of a function can be written in the following way:

dy =y dx=1{f"(x)dx.

1 The perigee of the satellite orbit is the shortest distance from the sate-
Ilite to the centre of the Earth.
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For a composite function y=Ff(u), u=¢(x) the differential is
retained in the form

dy =1' (u)du

(the invariance of the form of the differential).

With an accuracy up to infinitesimals of a higher order than Ax
the approximate formula Ay ~dy takes place. Only for a linear
function y =ax+b do we have Ay =dy.

Differentials of higher orders of the function y=Ff(x) are succes-
sively determined in the following way:

d?y =d(dy); d’y=d(dy), ..., d"y=dd"'y).
If y=f(x) and x is an independent variable, then
d?y =y" (dx)%;, d*y=y" (dx)?, ..., d"y=y'™ (dx)".

But if y=f(u), where u=¢(x), then d?y={" (u)du*+ [’ (u) d?u, and
S0 on.
2.6.1. Find the differential of the function
y =In (1 + e'°¥) 4 arc tane®*.

Calculate dy at x=0; dx=0.2.
Solution.

(1 -+ elox)' (esx)' Hebx (285"——- 1
dy:[ [Felox _1_*..elox] d =_]_|._elT)d :

Substituting x=0 and dx=0.2, we get
d!/ lx:O; dx=0.2 =%02 =0.5.

2.6.2. Find the increment and the differential of the function
y=3x*+x—1
at the point x=1 at Ax=0.1.

Find the absolute and relative errors allowed when replacing the
increment of the function with its differential.

Solution.
Ay =3 (x-+AxP + (x+Ax) — 1] —(3x* +x—1) —
=9x? Ax 4+ 9x Ax? 4- 3Ax3 + Ax,
dy=(9x*+ 1) Ax.
Whence

Ay—dy =9x Ax® 4+ 3Ax3.
At x=1 and Ax=0.1 we get

Ay—dy =0.09+0.003 =0.093,
dy =1, Ay=1.093.



124 Ch. 11. Difjerentiation of Funclions

The absolute error | Ay —dy|=0.093, the relative error ‘AyAydyl
0.093 ,
2.6.3. Calculate approximately the increment of the function

Yy=x—Tx*+48
as x changes from 5 to 5.01.

2.6.4. Using the concept of the differential, find the approximate
value of the function
— /2= at x=0.15
Y= 5T x =0.1o.
Solution. Notice that from Ay =y (x+ Ax)—y(x) we get
y(x+Ax) =y (x)+ Ay,
or, putting Ay =~ dy,
y(x+Ax) =~ y(x)+dy.

In our problem let us put x=0 and Ax=0.15. Then

, 1§ /ToExNG (—4)
b¥=3% (2—x> PR

¥ (0)=—, dy=—1-0.15=—0.03.
Hence,
y(0.15) = y(0)+dy=1—0.03 =0.97.
The true value of y(0.15)=0.9702 (accurate to 1074).
2.6.5. Find the approximate value of:
(a) cos31% (b) log10.21; (c) 3/33; (d) cot 45°10".

Solution. (a) In solving this problem we shall use the formula (*)
of the preceding problem. Putting x =n/6, Ax =n/180, we compute:

o V3
y(x)—cos-6—_—2—,
, . . n__l,

Yy (¥)=—sing=—=;

o V3 1 n
cos 31 —cos( +180> 5 _?Ts‘o=0851

(c) Put x=32; Ax=1. By formula (*) we get

/88~ /324 (V/ ®emar 1 =2+ o= =24 5 =2.0125,

5 ,/324
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2.6.6. All faces of a copper cube with 5-cm sides were uniformly
ground down. As a result the weight of the cube was reduced by
0.96 g. Knowing the specific weight of copper (8) find the reduction
in the cube size, i.e. the amount by which its side was reduced.

Solution. The volume of the cube v=x? where x is the length
of the side. The volume is equal to the weight divided by the den-
sity: v=p/d; the change in cube’s volume Av=0.96/8 =0.12 (cm?).
Since Av approximately equals dv and taking into consideration that
av =3x%dx we shall have 0.12=3x52x Ax, whence

0.12
Ax = o5 = 0.0016 cm.

Thus, the side of the cube was reduced by 0.0016 cm.

2.6.7. Find the expressions for determining the absolute errors in
the following functions through the absolute errors in their argu-
ments:

(a) y=Inx; (b) y=log x;

(¢) y=sinx (0 < x < m/2); (d) y=tanx (0 < x < m/2);

(e) y=log(sinx) (0 < x < m/2);

(f) y=Ilog(tanx) (0 < x < m/2).

Solution. 1f the function f(x) is differentiable at a point x and

the absolute error of the argument A, is sufficiently small, then
the absolute error in the function y can be expressed by the number

(@) Ay=|(nx)"[, A, =7", i.e. the absolute error of a natural

logarlthm is equal to the relative error in its argument.
(b) A,—(logx)' A =2 A,, where M =loge=0.43429;
(e) Ay =|[log(sinx)]"|A;=M]|cotx|A,;
(1) A, =|[log(tan )]’ | A, = —2 A,

| sin2x |
From (e) and (f) it follows that the absolute error in logtan x
is always more than that in logsinx (for the same x and A,).

2.6.8. Find the differentials dy and d*y of the function
y=4x5—T7x*+3,
assuming that:
(1) x is an independent variable;
(2) x is a function of another independent variable.

Solution. By virtue of the invariance of its form the differential
of the first order dy is written identically in both cases:

dy =y’ dx = (20x*— 14x)dx.
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But in the first case dx is understood as the increment of the
independent variable Ax (dx=Ax), and in the second, as the diffe-
rential of x as of a function (dx may not be equal to Ax).

Since differentials of higher orders do not possess the property
of invariance, to find d?y we have to consider the following two
cases.

(1) Let x be an independent variable; then

d?y = y" dx* = (80x® — 14) dx2.
(2) Let x be a function of some other variable. In this case
d?y = (80x®— 14) dx* 4 (20x* — 14x) dx.
2.6.9. Find differentials of higher orders (x an independent va-
riable):
(a) y=4-*"; find d?y;
(b) y=V1nx—4; find d?;
(c) y=sin?x; find d%y.

2.6.10. y= Inl=% + ; find 4%y if: (a) x is an independent variable,
(b) x is a function of another variable. Consider the particular
case when x=tant.

2.6.11. The volume V of a sphere of radius r is equal to

%nr‘*. Find the increment and differential of the volume and

explain their geometrical meaning.

2.6.12. The law of the free fall of a material point is s=gt?/2.
Find the increment and differential of the distance at a moment ¢
and elucidate their mechanical meaning.

§ 2.7. Additional Problems

2.7.1. Given the functions: (a) f(x)=|x| and (b) ¢ (x)=]|x*|.
Do derivatives of these functions exist at the point x=0?

2.7.2. Show that the curve y=el*l cannot have a tangent line
at the point x=0. What is the angle between the one-sided tan-
gents to this curve at the indicated point?

2.7.3. Show that the function
f(x)=|x—a]|p(x),

where ¢ (x) is a continuous function and ¢ (a) 40, has no deriva-
tive at the point x=a. Find the one-sided derivatives [’ (a) and

I+ (a).



§ 2.7. Additional Problems 127

2.7.4. Given the function
() = i x2sin(l/x) at x=£0,
—{ 0 at x=0.

Use this example to show that the derivative of a continuous
function is not always a continuous function.

2.7.5. Let
::[ x2,if x < x,,
F) 1 ax-+b, if x> x,.

Find the coefficients a and & at which the function is continuous
and has a derivative at the point x,.

2.7.6. By differentiating the formula cos 3x = cos®x—3cos xsin*x
deduce the formula sin 3x =3 cos? x sin x—sin? x.
2.7.7. From the formula for the sum of the geometric progression

—_xn+1
I+ x4x24... —]—x":l—l—iT+ (x=£=1)
deduce the formulas for the following sums:
(a) 14-2x+3x24-... +nx""1
(b) 124 22x 43224 ... }-n2x""1,
2.7.8. Prove the identity
sin 2nx
cosx+cos3x+ ... +cos(@n—1)x = > sin 1

, X==kn

and deduce from it the formula for the sum
sinx+3sin3x+ ... 4+@n—1)sin(2n—1) x.

2.7.9. Find y’ if:

(@) y—[(sin®x)4f (cos*x); (b) y=F(e¥)e/™;

(©) y=logym P (x) (9(x)>0; P(x)>0).

2.7.10. Is it reasonable to assert that the product F (x)=f(x)g(x)
has no derivative at the point x=1x, if:

(a) the function f(x) has a derivative at the point x,, and the
function ¢ (x) has no derivative at this point?

(b) neither function has a derivative at the point x,?

Consider the examples: (1) f(x)=x, g(x)=|x|;

@) f)=1x], gx)=|x|.

Is it reasonable to assert that the sum F(x)=f(x)+4 g (x) has no
derivative at the point x=x, if:
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(c) the function f(x) has a derivative at the point x,, and the
function g(x) has no derivative at this point?
(d) neither function has a derivative at the point x,?

2.7.11. Prove that the derivative of a differentiable even function
is an odd function, and the derivative of an odd function is an
even function. Give a geometric explanation to these facts.

2.7.12. Prove that the derivative of a periodic function with
period T is a periodic function with period T.

2.7.13. Find F'(x) if

x x2 x®
1 2x 3x2
02 6x

2.7.14. Find the derivative of the function y=x|x|. Sketch the
graphs of the given function and its derivative.

F(x)=

2.7.15. Suppose we have a composite function y=f(u), where
u-=¢ (x). Among what points should we look for points at which
the composite function may have no derivative?

Does the composite function always have no derivative at these
points? Consider the function y=u? u=|x]|.

2.7.16. Find y" for the following functions:
x?sin (1/x), x==0,
=|x*]; (b =
(@) y=[x*; (b) y {Oatx=0.
Is there y” (0)?
2.7.17. (a) f(x)=x"; show that
I’ (1) f‘z’(l) f"”(l) n
f)+—=+—5—+... +— =2"
(b) [(x)=x""1e% show that
[F ] =(—1rL2 =12 ...

xzn
2.7.18. y=x%"*9 show that
—Nn*n(n—1
f(n)(O)z( I) [’;;(—z ) (n>2)

2.7.19. Show that the function y=arcsinx satisfies the relation
(1—x*) y"=xy’. Find y™(0) (n>2) by applying the Leibniz for-
mula to both members of this 1dent1ty

2.7.20. Prove that the Chebyshev polynomials

T,(x)= 2n_1cos(narccosx) n=12,...)



§ 2.7. Additional Problems 123

satisfy the equation
(1—x*) T7 (x)—xT 5, (x) + n*T, (x) =0.

2.7.21. The derivative of the nth order of the function e~*" has

the form \
(e—x")(m —e—¥ H,, (%),

where H,(x) is a polynomial of degree n called the Chebyshev-
Hermite polynomial.
Prove that the recurrence relation

H,. (0)—2xH, (x)+2nH,_ (x)=0 (n=1, 2, ...)
is valid.

2.7.22. Show that there exists a single-valued function y =y (x)
defined by the equation y*>+3y=ux, and find its derivative y,.

2.7.23. Single out the single-valued continuous branches of the

inverse function x=x(y) and find their derivatives if y=2x*>—x?.
2.7.24. u—_—Llnﬂ; check the relation 4% —1.
2 l—v dvdu
2.7.25. Inverse trigonometric functions are continuous at all
points of the domain of definition. Do they have a finite deriva-
tive at all points of the domain? Indicate the points at which the

following functions have no finite derivative:

(a) y=arccosf—t—l; (b) y=arcsin—)lc-.

2.7.26. Show that the function y=y(x), defined parametrically:
x=2t—|t|, y=1#*+t|t|, is differentiable at t=0 but its deriva-
tive cannot be found by the usual formula.

2.7.27. Determine the parameters a, b, ¢ in the equation of the
parabola y=ax®+bx+c so that it becomes tangent to the straight
line y=x at the point x=1 and passes through the point (—1, 0).

2.7.28. Prove that the curves y,=f(x) (f(x) >0) and y, =
= f(x)sinax, where f(x) is a differentiable function, are tan-
gent to each other at the common points.

2.7.29. Show that for any point M (x,, y,) of the equilateral
hyperbola x?—y?=a> the segment of the normal from the point
M to the point of intersection with the abscissa is equal to the
radius vector of the point M.

2.7.30. Show that for any position of the generating circle the
tangent line and the normal to the cycloid x=a ({—sinf),
y=a(l—cost) pass through the highest (af, 2a) and the lowest
(at, 0) points of the circle, respectively.

5-3148
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2.7.31. Show that two cardioids p=a(l+4cos¢) and p=
= a(l—cos¢) intersect at right angles.

2.7.32. Let y=f(u), where u=¢@(x). Prove the validity of the
cquality

d*y =" (u) du® + 3f" (u) du d*u + ' (1) d*u.

2.7.33. Let y={(x), where x=g¢(¢); the functions f(x) and
¢ (t) are twice differentiable and dx=%40. Prove that

" d?ydx — dyd?x
T T 4

where the differentials forming the right member of the relation
are differentials with respect to the variable £.

2.7.34. How will the expression

d%y dy
(I—x*) T 5—x 2ty
be transformed (where y is a twice differentiable function of x) if
we introduce a new independent variable ¢, putting x =cos¢?

2.7.35. In determining an electric current by means of a tangent
galvanometer use is made of the formula

I =ktan g,
where [ =current
k =factor of proportionality (depending on the instrument)
¢ =angle of pointer deflection.
Determine the relative error of the result which depends on the
inaccuracy in reading the angle ¢. At what position of the pointer
can one obtain the most reliable results?



Chapter 3

APPLICATION OF DIFFERENTIAL
CALCULUS TO INVESTIGATION
OF FUNCTIONS

§ 3.1. Basic Theorems on Differentiable Functions

Fermat’s Theorem. Let a function y={(x) be defined on a cert-
ain interval and have a maximum or a minimum value at an in-
terior point x, of the interval.

If there exists a derivative f’(x,) at the point x,, then f’ (x,) =0.

Rolle’s Theorem. If a function f(x) is continuous in the interval
[a, b], has a finite derivative at all interior points of this interval,
and f(@)={(b), then inside [a, b] there exists a point E€ (a, b)
such that f’(§)=0.

Lagrange's Theorem. If a function f(x) is continuous in the in-
terval [a, b] and has a finite derivative at all interior points of
the interval, then there exists a point §€&(a, b) such that

fo)—F (@)= (—a)[' ®).

Test for the Constancy of a Function. If at all points of a cer-
tain interval f’'(x)=0, then the function f(x) preserves a constant
value within this interval.

Cauchy’s Theorem. Let ¢ (x) and ¢ (x) be two functions continu-
ous in the interval [a, b] and have finite derivatives at all inte-
rior points of the interval. If these derivatives do not vanish si-
multaneously and ¢ (a) %= ¢ (b), then there exists § € (a, b) such that

YO—v@ _ v
PO)—9@ ¢ "

3.1.1. Does the function f(x)=3x*—1 satisfy the condition of
the Fermat theorem in the interval [1, 2]?

Solution. The given function does not satisfy the condition of the
Fermat theorem, since it increases monotonically on the interval
[1, 2], and, consequently, takes on the minimum value at x= 1 and
the maximum one at x=2, i. e. not at interior points of the in-
terval. Therefore, the Fermat theorem is not applicable; in other
words, we cannot assert that f’(l1)=f'(2)=0. Indeed, f’(1)=6,
fr(2)=12.

9%
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3.1.2. Do the following functions satisfy the conditions of the
Rolle theorem?

(a) f(x)=1—}/% in [—1, 1];

(b) f(x)=Insinxin [n/6, 5n/6];

() f(x)=1—]|x]| in [—1, 1].
If they do not, explain why.

Solution. (a) The function is continuous in the interval [—1, 1];
furthermore, f(—1)=f(1)=0. Thus, two conditions of the Rolle

theorem are satisfied. The derivative f’'(x)=—2/(3;/ x) exists at
all points except x=0. Since this point is an interior one, the third
condition of the theorem is not satisfied. Therefore, the Rolle the-
orem is not applicable to the given function. Indeed, f’'(x)<0 in

[—1, 1].
3.1.3. Prove that the equation
3x° 4 15x—8=0

has only one real root.

Solution. The existence of at least one real root follows from the
fact that the polynomial f(x)=3x®+15x—8 is of an odd power.
Let us prove the uniqueness of such a root by reductio ad absur-
dum. Suppose there exist two roots x, < x,. Then in the interval
[x,, x,] the function f (x)=3x>+ 15x—8 satisfies all conditions of
the Rolle theorem: it is continuous, vanishes at the end-points and
has a derivative at all points. Consequently, at some point&, x;, < § < x,,
f (€)=0. But ' (x)=15(x*+1) > 0. This contradiction proves that
the equation in question has only one real root.

3.1.4. Does the function f(x)=3x*—5 satisfy the conditions of
the Lagrange theorem in the interval [—2, 0]? If it does, then
find the point § which figures in the Lagrange formula f (b)—f (a) =
—}' (8) (h—a).

Solution. The function satisfies the conditions of the Lagrange
theorem, since it is continuous in the interval [—2, 0] and has a
finite derivative at all interior points of the interval. The point §
is found from the Lagrange formula:

’ 0)—f(—2 —5—7

whence §=—

3.1.5. Apply the Lagrange formula to the function f(x)=Inx in
the interval [1, e] and find the corresponding value of E.

3.1.6. Ascertain that the functions f(x)=x*—2x+3 and g(x) =
= x3—T7x*+20x—5 satisfy the conditions of the Cauchy theorem
in the interval [1, 4] and find the corresponding value of &.



§ 3.1. Basic Theorems on Difjerentiable Functions 133

Solution. The given functions f(x) and g(x) are continuous eve-
rywhere, and hence, in the interval [1, 4] as well; their derivatives
[ (x)=2x—2 and g’ (x)=3x2—14x+20 are finite everywhere; in
addition, g’ (x) does not vanish at any real value of x.

Consequently, the Cauchy formula is applicable to the given
functions:

f@O—=i)_ '@
g@—g) ¢'®’
1n—2  2—2
27—9 38— [4E1-20 (1 <E<4).

Solving the latter equation, we find two values of &: & =2 and
E =4
? Of these two values only &, = 2 is an interior point of the interval.

3.1.7. Do the functions f(x)=e* and g(x)= I-Ix)x— satisfy the con-
ditions of the Cauchy theorem in the interval [—3, 3]?

3.1.8. On the curve y=x* find the point at which the tangent
line is parallel to the chord through the points A(—1, —1) and
B (2, 8).

Solution. In the interval [—1, 2], whose end-points are the abs-
cissas of the points A and B, the function y= x® is continuous and
has a finite derivative; therefore the Lagrange theorem is applicable.
According to this theorem there will be, on the arc AB, at least
one point M, at which the tangent is parallel to the chord AB.
Let us write the Lagrange formula for the given function:

f@)—f (==} [2—(=D]

84 1=23e3;

or

whence
§l=—l, §2= 1.

The obtained values of & are the abscissas of the desired points
(as we see, there exist two such points). Substituting &, and §, in
the equation of the curve, we find the corresponding ordinates:

y=8=1 y,=8=—1

Thus, the required points are: M, (1, 1) and M, (—1, —1), of which
only the former is an interior point on the arc AB.

Note. This problem can be solved without using the Lagrange the-
orem; write the equation of the chord as a straight line passing
through two given points, and then find the point on the curve at
which the tangent is parallel to the chord.
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3.1.9. Taking advantage of the test for the constancy of a func-
tion, deduce the following formulas known from elementary math-
ematics:

(a) arc sin x4 arc cos x = n/2;
(b) sin?x=(1-—cos2x)/2;
(©) arccosi—%—%:Qarc tanx at 0 <<x <oo;
n—2arctanx at x> 1,
2x

(d) arcsin = 2 arc tan x at —1<C<x<,
—n—2arctanx at x<{ —1.
Solution. (a) Let us consider the function

[ (x)=arc sin x + arc cos x,

defined in the interval [—1, 1]. The derivative of the indicated
function inside this interval equals zero:

AN B
P =yr=—vy1==
According to the test for the constancy of a function f(x)= const,
i. e arcsinxtarccosx=C (—1<<x<1).

To determine the constant C let us put, for instance, x=0; then
we have n/2=C, whence

=0 (—l<x<l).

arcsinx-J-arccosx=mn/2 (—1 <x<1).

The validity of this equality at the points x= 41 is verified
directly.
(b) Let us take the function

fx)= sin2x+—;— cos2x
defined throughout the number scale: —oo < x < 0o. The derivative
of this function is everywhere equal to zero:
[’ (x)=2sinxcosx—sin2x =0.

According to the test for the constancy of a function
sin%—}—%cos?x:C.

To determine C put, for instance, x=0; then we get 1/2=C.
Wherefrom
|

. 1
2 — —_ —
sin? x4 3 cos2x 7
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or
I —cos 2x
2

(c) Let us introduce the function

sin®x =

f(x)_arccosl+ s—2 arc tan x,

determined along the entire number scale, since ’H—x <L
The derivative of {he function f(x) is zero for all x > 0:
, . —4x 2 4x 2
I = l/' e T (Ea i i T ) R
<1+xz>
According to the test for the constancy of a function

arccosl *_ ~—2arctany=C at x> 0.

To determine C let us put, say, x=1, which gives C = arccos0—
—2arctan1=0.
The validity of the proved formula at x=0 is verified directly.

Note. At x=0 the function arccosl_l_xj has no derivative. At
x < 0 its derivative is

(aTCCOSl xz) = 2
T-+x2) — — T+x2°

which enables us to derive the formula

arccos H_x2 = —2 arctanx (x <0).

The Iatter formula can be obtained on the strength of the fact

2
that arccos is an even function, and 2 arc tanx is an odd one.

1+2

3.1.10. As is known, (e*)’=e* for all x. Are there any more
functions that coincide with their derivatives everywhere?

Solution. Let the function f(x) be such that f’(x)=f(x) every-
where.

Let us introduce the function

o0 =12 =fwe
The derivative of this function equals zero everywhere:

¢ (¥)=["(x)e"*—e"*[ (x) =0.

By the test for the constancy of a function f(x)/e*=C, whence
[ (x) =Ce*.
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And so, we have proved that the group of functions for which
["(x)=/(x) is covered by the formula f(x) =Ce*.
3.1.11. Prove the inequality
arc tan x,—arc tan x; < x,—x;,,
where x, > x,.

Solution. To the function f(x)-=arctanx on the interval [x,, x,]
apply the Lagrange formula:

arc tan x,—arc tan x, == TZ}E—E— (x,—x)),

where x; <& < x,.
Since

0<W1§-2—<1 and x,—x, >0,

then
arc tanx,—arctanx, < x, —x,.
In particular, putting x, =0 and x,=x, we get
arctanx <x (x > 0).

3.1.12. Show that the square roots of two successive natural
numbers greater than N? differ by less than 1/(2N).

Solution. To the function f(x)=}"x on the interval [n, n+1]
apply the Lagrange formula:

VATV
fin+D)—fn)y=Vn+1 Vn*?V'E’

where n <& < n-+1.
If n> N2, then E> N2, hence 1/(2V E) < 1/(2N), whence

Vit+1—Vn < 1/@2N).
3.1.13. Using the Rolle theorem prove that the derivative [’ (x)
of the function
{xsin% at x>0,

fx) =<
[ o at x=0
vanishes on an infinite set of points of the interval (0, 1).
Solution. The function f(x) vanishes at points where

sin(sm/x) =0, m/x=kn, x=1/k,
k=1, 2, 3, ...

Since the function f(x) has a derivative at any interior point
of the interval [0, 1], the Rolle theorem is applicable to anyone
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of the intervals [1/2, 1], [1/3, 1/2], ..., [l/(k+1), 1/k],
Consequently, inside each of the intervals of the sequence, there is
a point &,, 1/(k-41) < E, < 1/k, at which the derivative [’ (E,)=0.
And so we have shown that the derivative vanishes on an infinite
set of points (see Fig. 38).

3.1.14. The Legendre polynomial is 4
a polynomial defined by the following /-
formula (Rodrigues’ formula):

1 dan
Pn(x)::m'm(xz—l)n (n'—_—‘O,

1,2 ...).

Using the Rolle theorem, prove
that the Legendre polynomial P, (x)
has n different real roots, all of them
found between —1 and -+ 1.

Solution. Consider the function

f)=—1)"=(x—1)" (x4 )"
This function and its n—1 successi-
ve derivatives vanish at the points Fig. 38
x==1 (use the Leibniz formula for
higher derivatives of the product of two functions).

It follows from f(1)={f(—1)=0 that inside the interval [—1, 1
a point & can be found at which ' (§,)=0, i.e. x=8, will be the
root of the first derivative. Now apply the Rolle theorem once again
to the function f’(x) on the intervals [—1, &], [E, 1]. We find
that besides + 1 and —1 the function f”(x) has two more roots
on the interval [—1, 1]. Reasoning as before, we will show that,
apart from +1 and —1, the (n— 1)th derivative has (n— 1) more
roots on the interval [—1, 1], i.e. the function f""~? (x) has all in
all n+1 roots on the interval [—1, 1], which divide this interval
into n parts. Applying the Rolle theorem once again, we ascertain

that the function ' (x), and hence, the function P, (x)=2nln!f"” (x),
has n different roots on the interval [—1, 1].

3.1.15. Check whether the Lagrange.formula is applicable to the
following functions:

(@) f(x)=x*> on [3, 4];

(b) f(x)=Inx on [1, 3];

(¢) [(x)=4x*—5x*4-x—2 on [0, 1];

(d) f(x)=3/x*(x—1) on [—1/2, 1/2].

If it is, find the values of & appearing in this formula.

3.1.16. Using the Lagrange theorem estimate the value In(1-}e)
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3.1.17. Using the Lagrange formula prove the inequality
X L~
m<ln(l+x)<x at x > 0.

§ 3.2. Evaluation of Indeterminate Forms.
L’Hospital’s Rule
[. Indeterminate forms of the type%, Z—S If the functions [(x)

and g(x) are differentiable in a certain neighbourhood of the point a,
except, may be, at the point a itself, and g’(x) 0, and if

lim f(x)=lim g(x)=0 or lim f(x)=lim g(x)= oo,

X > a XxX—-a X >0
then
PR 0 DR TR A €]
lim o= M o
provided the limit lim g,((?) exists (L’Hospital’s rule). The point a
X —-a

may be either finite or improper + oo or —oo.
II. Indeterminate forms of the type 0-co or oo — oo are reduced

to forms of the type %or g by algebraic transformations.

I11. Indeterminate forms of the type 1, oo or 0° are reduced
lo forms of the type 0-o0o by taking logarithms or by the transfor-
mation [f(x)]e® =ee® Infn),

3.2.1. Applying the L’Hospital rule, find the limits of the follo-
wing functions:

) lim £ oy tim VTEEEL
-0 MI+x) ko -1 Vofxtx'
. eX—e—X.-2x . In (14 x?)
¢) lim ————; Xy .
(€) ro 0 X—sinx (d) xh_{nocos&v——e“x’
. sin 3x2 | . e'¥ |
© 1M fices@e—n’ 0 lim o e ==

X - ©

Solution. (a) Here beth functions f(x)=e"*—e~2* and g(x)=
=In (1 +x) are infinitesimals in the neighbourhood of zero, since

limf(x)=1—1=0; limg(x)=In1=0.
x>0

x>0

Furthermore f’(x) and g’ (x) exist in any neighbourhood of the
point x=0 that does not contain the point x - —1, and

, 1
g (x):'m¢0 (x>—1).
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Finally, there exists a limit of the ratio of the derivatives:

im L) __ [jy oetrblaeier
xh},no (%) ,Ch_r,no /(1 +x) = 3a.

Therefore the L’Hospital rule is applicable:

X __p—2ax . aed¥ 1-9qe—2ax
[lm = lim +

AN — o et T *
R T (e e i e el ®)

Note. When the limit of the ratio is computed according to the
L’Hospital rule the result is usually written directly as shown in (*).
Whether the desired derivatives and limits exist is ascertained in

the course of calculation. In case the ratio of the derivatives f )

again represents an indeterminate form, the L’Hospital rule should
be applied for a second time, and so on until the indeterminacy is
removed or until it becomes clear that the required limits do not
exist. Therefore, henceforward we write only the necessary transfor-
mations, leaving to the reader the task of checking whether the
conditions of their applicability are fulfilled.

VT 2x+1 2/(3 )/ T+20%) 4
l‘ —_—— e = l. ————— ———— = ——
(b) x—l»n-]l V2fx+x x-1>n:-]l /e Va2+x)+1 9’7

sin 3x? — 6x cos 3x® cos (2x>—x)

(€) hm o In cos (2x* —x) ,l’ino (4x—1) sin (2x2 —x)
_ . cos 3x2 cos (2x* —x) X
=—6 xh_, 0 4x — 1 ,'11_, o Sin (2x2 —x) *

The limit of the first factor is computed directly, the limit of the
second one, which represents an indeterminate form of the type % is
found with the aid of the L’Hospital rule:

. cos 3x2 cos (2x2—x) X _
_6)‘11_’0 4x — 1 xh_,osm(2x2 x)
1 1
=—6- -—I llmo (4x—1) cos (2x2—x) =6- Y —6.

3.2.2. It is known that, as x — 4 oo, the functions x*(k > 0);
log, x; a*(a > 1) are infinitely large quantities. Applying the L"Hos-
pital rule, compare these quantities.

1
— log, e
. . logyx . x °° . 1
Solution. 1. lim g;j = li = =logee lim — =0
kx @ k '
X+ x> +® X > + o RX
. xm . mx™=) . m!
2. lim = lim ZX— =...= lim ———=
t>+® xot+w@flna xo 1w @(na)
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Hence, the power function x*(& > 0) increases more rapidly than
the logarithmic function log, x(a > 1), and the exponential function
a* with the base exceeding unity increases more rapidly than the
power function x”.

3.2.3. Find the limits:
. 1 1 , ]
() lim (m——ﬁ); (b) lim (cotx——;);

X - x>0
. 1 1

0 i (=)

Solution. (a) We have an indeterminate form of the type co —oo.
Let us reduce it to an indeterminate form of the type % and then
apply the L’Hospital rule:

. 1 1\ _ o x—l—Inx . I—1/x
Jim (’EE"ﬁ) =lim e = IIm e
x—1 . 1 1

lim

xoq Inx+2 2"

x_),xlnx—f—x——l=
3.2.4. Find the limits:
(a) lim x*Inx(n > 0);
x>0

(b) lim [In (1 + sin®x) cot In* (1 + x)].

x—> 0
Solution. (a) We have an indeterminate form of the type 0-oco.
Let us transform it to g, and then apply the L’Hospital rule:

Inx lim 1/x

lim x*Inx =1lim — = -
x>0 x> 0% x—»O—nxnl

1. .
=—— lim x*=0, since n>0.

(b) We have an indeterminate form of the type 0-oo:

- .  pin In(14-sin2x)
ilf]o[ln(l +sin? x) cot In? (1 + x)] = ,1‘1_1310 AT =
1
—.,‘,,sin2x
—lim 1+ sin? x — -

"*02{1+tan2[ln2(l+x)]}ln(l-i—x)-H_x

BRT sinx . cos x

=lim oy =lim == =1

l4x

3.2.5. Find the limits:

(a) lim (I/x)sn % (b) lim xv/iner=n,
x->+0

x>+40
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Solution. (a) We have an indeterminate form of the type oo°.
Let y-=(1/x)*"~ then
Iny=sinxIn(l/x),
lim Iny == lim sinxIn(l/x) (indeterminate form of the type 0-o0).

x40 x->+0

Let us transform it to ; and apply the L'Hospital rule:

lim Iny = lim —o% = lim —— 2% — [im 2%
X o t0 v oo l/sinx g —(cos x)/sin?x gxcosx
Hence, lim y=e"=1.
x40
3.2.6. Find the limits:
(a) lim (sinx)tanx, (by lim x*.
X -+ /2 x—-0

3.2.7. Compute

lim  (tanx)cot~*,
x>+ /2-0

Solution. Let us take advantage of the identity

(tan JC) cot x _ pcot x In tan x

but
. . Intan x . In
lim cotxlntanx= lim N = lim —2Y—o.
x> +7/2=0 x—>+m/2-0 aNX y=tanx >+
Whence

lim (tanx)cotx=¢*=1.
x->+7/2-0

3.2.8. Ascertain the existence of the following limits:
x2 sin (1/x) |

sinx

2+ 2x4-sin2x
lim ——————

(b) xL o (2x+sin 2x) e*'" ¥
tan x

(a) lim

(©) 1 ee
Can the L’Hospital rule be applied in computing them?
Does its formal application lead to the cerrect answer?

Solution. (a) The limit exists and equals zero. Indeed,

li x— sin (1/x)

lm 11mxsm—~_1 0=0.

x-0  SINX 0s Yx-0

But the limit of the ratlo of the derivatives does not exist. Indeed,
2x¢sin(1/x)—cos (1/x) 0—
cos x -

1
lim cos —

x>0

lim
x>0
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but limcos(1/x) does not exist, hence the L’Hospital rule is not
x>0
applicable here.
(b) The limit of the ratio of the functions does not exist:

s . .
m 2+2x.sm?x'= lim <1+ 2‘ , \e—smx
x>« (2¢+sin2x) e * 4L . 2x-|-sin 2x

but lim e=s" * does not exist, since the function e~ * traverses the
X - o

values from 1/e to e infinitely many times.
Now we will show that the limit of the ratio of derivatives exists:

lim 2-+2 cos 2x _
% - = |22 cos 2x+ (2x - sin 2x) cos x] %" *
= llm 4(‘052% —sin x __
v o o 4082 x4 (2x-sin 2x) cos x
= |i 4 cos x sinx
N xlljz 2xF 4 cos x4 sin 2x =0,

. . sin x 4 cos x
since the function e—s is bounded, and S TTcos x s QxXT;O

Here cosx, which vanishes for an infinite set of values of x, has
been cancelled out. It is the presence of this multiplier that makes
the L’Hospital rule inapplicable in this case, since it simultaneously
nullifies the derivatives of the functions being compared.

. tan x . sec? x . sec X . tan x
(c) lim = lim coxtany = Hm == lim =..,
X 2 SECX eomeSCCXtany otanx o, sec x

Here application of the L'Hospital rule gives no usefu! result, though
there exists a limit:
lim 202 fim S0ECOSY_ jin sinx=1.
x—>7/2 sec x x-m/2 cos x x> /2
3.2.9. Using the L’Hospital rule find the limits of the following
functions:

- In (x2—3) | LU
(@) xh_,m-, x243x—10"° (b) 31_{“[ Inx

. tanx—x | . 1 —4sin?(nx/6)
(c) )Icl-rf]O sy (d) ll—{n] —

(e) limarcsinZ=Zcot (x—a); (f) lim (m—2arc tan x) Inx;
a

X —»a X— 4+ ®
(g) lim0 (%)lm; (h) lim(@"*—1)x (a > 0);
X >+ X - ®

xX—>a

(i) lim (cos mx)v/**; (j) lim (2—%)“’" (“X/(za));
x>0
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(k) 11m <mx “fx>; () li_{noxl/ln(e-ﬂ_l);
(m) llino <}Ll—cot‘*x>; (n) x“ﬁ; [)c—x2 In (l —{-%)] ;
(0) xlimwxz [cosh —z—-— IJ :(p) “m <2+ ]/E)q . >I/sin .

§ 3.3. Taylor’s Formula. Application to Approximate
Calculations

If the function f(x) is continuous and has continuous derivatives
through order n—1 on the interval [a, b], and has a finite derivative

of the nth order at every interior point of the interval then at
x€ [a, b] the following formula holds true:

F) =@+ @ (r—a)+ " (a) S5 +
_I__f/l' (a) (X;a)z_!_ f(n 1) (a)(ﬁ_—i_ f"” (E x—a)"

where
E=a+06(x—a) and 0 <O < 1.

It is called Taylor’s formula of the function f (x).
If in this formula we put a=0, we obtain Maclaurin’s formula:

Fx)=F(0)+F (0) x+ [ (0)§+ A (%—xf.%ﬁ
+f‘"’(§)% , where §=6x, 0 <0 < L.

The last term in the Tayloer formula is called the remainder in
Lagrange’s form and is denoted R, (x):

(n —
Rn(x)=wi,3<x_wl(x_a)n;

accordingly, the remainder in the Maclaurin formula has the form

R ( ) f(n)(ex) .

nl

3.3.1. Expand the polynomial P (x) =x®—2x*+ x*—x>+42x—1
in powers of the binomial x—1 using the Taylor formula.

Solution. To solve the problem it is necessary to find the value
of the polynomial and its derivatives at the point x=1. The
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relevant calculations are given below.

P (1)==0, P (1)=0,
P"(1)=0, P (1)=18,
P®(1)=72, P®(1)= 120,
P"(x)=0(n>=6)
at any x.
Substituting the values thus found into the Taylor formula, we get

P () = g (r— 1) 4 o (= 1) 22 (x— 1

Px)=3x—1+3(x— D4 (x—1).

3.3.2. Applying the Maclaurin formula, expand in powers of x
(up to x°, inclusive) the function

f(x)=1In(1+4x),

defined on the interval [0, 1]. Estimate the error due to deleting
the remainder.
Solution.
f(0)=Inl1=0.
The derivatives of any order of the given function (see § 2.3):

- i 1yn— (n—1)!
F () = (=D G

f(n) (0):(_1)”'1(;1._.1)' (r’l,: 1, 2, 3, ...).

Substituting the derivatives into the Maclaurin formula, we get

]n(l_'_x):x—x—;—i—);—g— . .+ fg_*_Rlo('x)’

where the remainder R,,(x) in the Lagrange form will be written
as follows:
(10) 9! 10
Rw (x):f_w!(g)xwz__ m){“‘:— 10(1x+ E)lo (0<E< X).
Let us estimate the absolute value of the remainder R, (x); keeping
in mind that 0<C{x<C1 and & > 0, we have

1

10°

—x10

|R10(x)|=’m

3.3.3. How many terms in the Maclaurin formula should be taken
for the function f(x)=e* so as to get a polynomial representing
this function on the interval [—I1, 1], accurate to three decimal
place-?

Solution. The function f(x)=e* has a derivalive of any order

f(n) (x) — e¥,



§ 3.3. Taylor’s Formula: Approximate Calculations 145

Therefore, the Maclaurin formula is applicable to this function. Let
us compute the values of the function e* and its first n—1 deriva-
tives at the point x=0, and the value of the nth derivative at the
point £=0x(0 <0 < 1). We will have

fO=1 O =F 0= =[* 0=
f(n) (§ — x
Whence
f(x>=1+1i,+’;—j+.. + s R ),
where
R, (x) = &b,
Since, by hypothesis, |x]<C1 and 0 <0 <1, then
L2
IR, (%)= =€ <',,Te<7”-
Hence, if the inequality
3 <0.001 (%)

is fulfilled, then the inequality
|R, (x)] < 0.001

will be fulfilled apriori. To this end it is sufficient to take n>7
(7! =5040). Hence, 7 terms in the Maclaurin formula will suffice.

3.3.4. At what values of x will the approximate formula

x2 x“
cosx~1— 5

have an error less than 0.00005?
Solution. The right member of the approximate equation repre-
sents the first six terms in the Maclaurin formula for the function

cos x (the second, fourth and sixth terms are equal to zero; check it!).

Let us estimate R, (x). Since (cosx)® = — cosx, then
e 6
R, (9)]=| =5 x| < L

For the error to be less than 0.00005, choose the values of x that
satisfy the inequality

[x1°
6!

Solving this inequality, we get |x| < 0.575.
3.3.5. Compute the approximate values of:
(a) cos 5% (b) sin20°,
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accurate to five decimal places.
Solution. (a) Into the Maclaurin formula

x? xt n X
cosx:l——Q—!—l—T—...—{—(—-l) o

ih— R2n+2
substitute x= m/36; since
1

x? x? [ x%\2 -
A= =0.003808, 51— (%) =2.4:107,

we confine ourselves to the following terms:
cosx ~ 1 —x%/2,
the error being estimated at

| Ry (x)|=

cos Ox
4!

[ x|
41

4

< 2.5-107¢.

<

And so, within the required accuracy

c0s5° = cosg% =1-—-0.00381 = 0.99619.

3.3.6. Compute the approximate value of /83 accurate to six
decimal places.

3.3.7. Prove the inequalities:

(a) x—x}/2 <In(14x) <x at x >0;
(b) tanx>x—|—x3/3 at 0<x<:rc/2

(c) l-{— x——-<l/1—|—x<l —xat0<x<oo

Solutton. (a) According to the Maclaurin formula with the rema-
inder R, (x) we have
X2
ln(l+x)=x—2(1—+§—)—z,
where 0 < & < x.
According to the same formula with the remainder R, (x) we have

In(l4x)=x— where

x2 x3
PRI EENEE
0<E, <x

Since w———=5 > 0 and

2(,_,_&) > 0 at x> 0, it follows that

x3
B(I+E)Y
x—x%2 < In(l 4-x) < x.

3.3.8. Show that sin(a-++#h) differs from sina+4-Acosa by not
more than h?/2.
Solution. By Taylor’s formula

sin (a2 +h) =

h2
2
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whence

|sin (oc+h)—(sinoc+hcosoc)|=’572]sin§ |<§.

§ 3.4. Application of Taylor’s Formula to Evaluation
of Limits

The expression
F)=F @+ —a)+ L2 (x—ap + .

+ 0(Ix—al"

f(n) (a)

o (x—a)" 4

is the Taylor formula with the remainder in Peano’s form where
¢ (x) =0 [ (x)] means that, as x — a, the function ¢ (x) has a hlgh
er order of smallness than the function ¢ (x), i.e. lll‘l]w() =0.
X > a
In particular, at a=0 we have

PO o (| .

Fo=FO)+ L&y LR ey L 20O
Peano’s form of the remainder for Taylor s formula shows that,
when substituting the Taylor polynomial of degree n for f(x) in the
neighbourhood of the point a, we introduce an error which is an
infinitesimal of a higher order than (x—a)* as x —a.
The following five expansions are of greatest importance in sol-
ving practical problems:

e =ldtxta .. 2 o)
xllll

Smx:x_%?‘*"“‘l'(—l)"—l 1)1 + o0 (x2");
COSX:]‘—;—;-}—%-F—F(—I) W+O(x2"+l);
(14+x)°=l4ax+ D2y L pale=D ..';!(a

(1 +x)=x——2—+7+ =) E o (),

a(a

=2 D g0 (),

3.4.1. Expand the function f(x)=sin®>x—x%~* in positive inte-
gral powers of x up to the terms of the fourth order of smallness
with respect to x.

Solution. We have

P = 1= o] =t [1—x -2 4 o()] =

=x2—-—’§-—|—o (x”)—xz—i—x“——-%‘—[—o (x*) =x3——%x’+o(x4).
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3.4.2. Expand the following functions:
) f(r)=xV 1—x*—cosxIn(l+x);
(b f(x)=In(14sinx)

in positive integral powers of x up to the terms of the fifth order
of smallness with respect to x.

3.4.3. Applying the Taylor formula with the remainder in Peano’s
form, compute the limits:

]——V‘l—f-xzcosx.

(a) xll_,mo tant x ’

) lim V14— Vitor .
x> 0 x2 ’
. cosx—e *7%

© i S5

~(d) lim e* sin x—x (1 }—x)
x>0 X3

(e) li;n%_
x -0 X

Solution. (a) Retaining the terms up to the fourth order with
respect to x in the denominator and the numerator, we get

— 2 . — 2)1/2
liml V14x cosx_____hml (1+x%)*cosx

Py tant x x-0 x
=)(li:no xt N
_‘_x4_|__l__x4__.l..x4—|-o(x4)
‘o 0 x—0

3.4.4. Expand the following functions in positive integral powers
of the variable x up to the terms of the indicated order, inclusive:

(a) f(x)=e*"*" up to the term containing x*;

(b) Incosx up te the term containing x¢;

(c) —eél- up to the term containing x*.

§ 3.5. Testing a Function for Monotonicity

Let a continuous function f(x) be defined on the interval [a, b]
and have a finite derivative inside this segment. Then:

(1) For f(x) to be non-decreasing (ncn-increasing) on [a, b] it is
necessary and sufficient that f'(x) = 0(f' (x) << 0) for all x in (a, b).
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(2) For f(x) to be increasing (decreasing) on [a, b] it is suffi-
cient to fulfil the condition f’'(x) >0 (f' (x) < 0) for all x in (a, b).

3.5.1. Determine the intervals of monotonicity for the following
functions:

@) f(x)= QV—II]X

( ) [(x)=2x"—9x* —24x - T,
¢) [(x )-xe 5

d)f (x)=1In|x|;

(e) f(x)=4x*—21x*+ 18x+ 20,

fy f(x)=e"+5x.

Solution. The soluticn of this problem is reduced to finding the
intervals in which the derivative preserves its sign. If the function
f(x) has a continuous derivative in the interval (a, b) and has in
it a finite number of stationary points x,, x,, ..., x, (@ <x, <
<xp < ... <X, < b), where ['(x,)=0(k=1, 2, ) then ' (x)
preserves its sign in each of the intervals (a xl) (5, X5), -
(s Xa), (X0 D).

(a) The function is defined at x > 0.

Let us find the derivative

[/ (x)=4x—1/x.
The function increases if 4x—1/x >0, i.e. x > 1/2.
The function decreases if 4x—1/x <0, i.e. x < 1/2.
And so, the function decreases in the interval 0 << x < 1/2 and

increases in the interval 1/2 < x < +4-o0.
(b) Evaluate the derivative

[ (x) = 6x2— 18x — 24 — 6 (x* —3x—4).

It vanishes at the points x=—1 and x=4. Since f'(x) is a
quadratic trinomial with a coefficient at its highest-power term 6 > 0,
then f'(x) >0 in the intervals
(— o0, —1), (4, ), and f'(x) <0 Y
in the interval (—~1, 4). Con-
sequently, f(x) increases in the
first two intervals, whereas in
(—1, 4) it decreases.

(c) In this case the derivative

[' ()= (2x—x?)e~* vanishes at 7 2 —>—z
the points x=0 and x=2. In
the intervals (— oo, 0) and (2, o) Fig. 39

the derivative [’ (x) <0 and the

function decreases; in (0, 2) the derivative f’(x) > 0 and the func-
tion increases (see Fig. 39).

3.5.2. Find the intervals of decrease and increase for the follo-
wing functions:
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(a) [ (x)=cos(n/x);
(b) f(x)=sinx+cosx on [0, 2mx].
Solution. (a) The function y= cos (x/x) is defined and differentiable
throughout the number scale, except at the point x=0;
. i
y'=zsin—.

As is obvious, the sign of y’ coincides with that of the multi-
plier sin (m/x).
(1) sin(m/x) > 0 if

Q2kn < mjx < (2k+Da (=0, =1, +£2, ...)
(2) sin(m/x) <0 if
Qk+ 1) n <am/x <2(k+1)m.
Hence, the function increases in the intervals

| 1
<2k—|—l’ "z‘k)
and decreases in the intervals

1 1 )
<2k+2’ 2%+1)"
3.5.3. Investigate the behaviour of the function f(x) =2sinx 4
-+ tanx—3x in the interval (—=n/2, n/2).
Solution. The derivative
1
cos?
__ 4 sin? (x/2) sin (3x/2)
- cos? x

(1 —cosx) (1 4+cosx—2cos?x)
cos2 x -

f' (x)=2cos x -+

—3=
X

is positive in the intervals (—m/2, 0) and (0, n/2) and vanishes
only at x=0. Hence, in (—mn/2, n/2) the function f(x) increases.

3.5.4. Prove that at 0 < x<C1 the inequalities

x—x3/3 < arctanx < x—x*/6
are fulfilled.
Solution. We will prove only the right inequality (the left one
is proved analogously).
The derivative of the function

f (x) = arc tan x—x—l—%3
is equal to

¥ x2(xE—1)

riey | ¥ _ 21
PO ===ty =srm
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The function f(x) is continuous throughout the entire number
scale, in particular, it is continuous in the interval [0, 1], and in-
side this segment f’ (x) <Z 0. Therefore, f (x) decreases on the interval
[0, 1] and, consequently, for any point x, 0 << x<C 1, the inequality
[~ F(0)=0 or

arc ’[anx—)H—%3 <0
is fulfilled, whence

X3
arctanx<x—g.

3.5.5. Prove the inequalities
x—x36 <sinx<<x at x>0.
3.5.6. Prove that for 0<C{p<C1l and for any positive a and b
the inequality (a-+0)? < a”f-b7 is valid.
Solution. By dividing both sides of the inequality by b7 we get
a \P a\r
(1) <(3)+1
or
1+ x)P < 1 4-x7, (*)

a
where x= 7

Let us show that the inequality (+) holds true at any positive x.
Introduce the function

Fr)=1+xr— (1427 x>0
The derivative of this function
()= prrt—p (1427~ =p |+ ]

=P (1 x)'=?
is positive everywhere, since, by hypothesis, | —p >0 and x> 0.
Hence, the function increases in the half-open interval [0, oo), i.c.
fx)y=14+xP—(1+x)?>f(0)=0, whence 1+ x?> (1-+x)?, which
completes the prcof. If we put p= 1/n, then we obtain

Vatb<ya+yb (n=)).

3.5.7. Prove that the function y = x® 4 2x® + x increases everywhere,
and the function y=1-—x" decreases everywhere.

3.5.8. Determine the intervals of increase and decrease for the
following functions:

(@) [(x)=x"+2x—5; (b) f(x)=In(l—x*);

(©) f(x)=cosx—ux; A =52 —1;
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@ Fin)=r; 0 F ()= o -

Inx’

3.5.9. Prove the following inequalities:
(a) tanx > x4 x%3, if (0 <x < m/2);
(b) € > 1-+x for all values of x;

(c) e >ex at x > 1.

3.5.10. At what values of the coefficient a does the function
f (x) =x®—ax increase along the entire number scale?

2.5.11. At what value of & does the function
f(x)=sinx—bx+4c
decrease along the entire number scale?

§ 3.6. Maxima and Minima of a Function

If a function y=7f(x) is defined on the interval X, then an in-
terior point x, of this interval is called the point of maximum of
the function f(x) [the point of minimum of the function f(x)] if
there exists a neighbourhood U € X of the point x,, such that the
inequality f(x)<{f(x,) [f (x) =] (x,)] holds true within it.

The generic terms for points of maximum and minimum of a fun-
ction are the points of extremum.

A Necessary Condition for the Existence of an Extremum. At
points of extremum the derivative f’(x) is equal to zero or does
not exist.

The points at which the derivative f’ (x)= 0 or does not exist are
called critical points.

Sufficient Conditions for the Existence of an Extremum.

I. Let the function f(x) be continuous in some neighbourhood of
the point x,.

1. If f/(x) >0 at x<<x, and f' (x) <O at x> x, (i.e. if in mo-
ving from left to right through the point x, the derivative changes
sign from plus to minus), then at the point x, the function reaches
a maximum.

2. If ['(x)<0 at x<x, and f'(x) >0 at x > x, (i.e. if in mo-
ving through the point x, from left to right the derivative changes
sign from minus to plus), then at the point x, the function reaches
a minimum.

3. If the derivative does not change sign in moving through the
point x,, then there is no extremum.

[I. Let the function f(x) be twice differentiable (that is ' (x,) = 0)
at a critical poeint x,. If f"(x,) <O, then at x, the function has a
maximum; if f”(x,) > 0, then at x, the function has a minimum;
but if f”(x,)=0, then the question of the existence of an extremum
at this point remains open.
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HI Let ['(x)=/"(xg)=...=[""1(x)=0, but f» (x,)s0. If
n is even, then at f* (x,) < 0 there is a maximum at X,, and at
f(x,) > O a minimum.

If nis odd, then there is no extremum at the point x,.

IV. Let a function y=f(x) be represented parametrically:

x=¢(t), y=v(),

where the functions ¢ (¢) and ¢ (f) have derivatives both of the first
and second orders within a certain interval of change of the argu-
ment ¢, and ¢’ ({) 5= 0. Further, let, at t=1%,

V' (1) =0.
Then:

(a) if ¢ (t ) < 0, the function y={f(x) has a maximum at x =
(bo) (to) > 0, the function y=/f(x) has a minimum at x =
=X=¢ (t )

(c) if ¢"(f,)=0, the question of the existence of an extremum
remains open.

The points at which ¢’ (¢f) vanishes require a special study.

3.6.1. Using the first derivative, find the extrema of the follo-
wing functions:

(a) f(x)= Ex“—x3 Ix?+7,
(b) f(x )——x‘1 —8x3 - 22x* — 24x - 12;
(C) f X)=x(x+1)3 (x—3)®
f( )_ 3x+2
x242x41°

Solution. (a) The function is defined and differentiable over the
entire number scale. Therefore, only the real roots of the derivative

[ (x)=3x*—3x2—18x=3x (x +2) (x—3)

are critical points. Equating this expression to zero, we find the
critical points: x,=—2, x,=0, x,=3 (they should always be ar-
ranged in an increasing order). Let us now investigate the sign of
the derivative in the neighbourhood of each of these points. Since
there are no critical points to the left of the point x=—2, the
derivative at all the points x <<—2 has one and the same sign: it
is negative. Analogously, in the interval (—2, 0) the derivative is
positive, in the interval (0, 3) it is negative, at x > 3 it is posi-
tive. Hence, at the points xlz——Q and x,=3 we have minima

f(—2)-=—9 aﬂd [@3)=

= and at the point x,=0, maxi-
mum f (0)

4 ’
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(c) Just as in item (a), the critical points are the roots of the
derivative f’(x), since the function is defined and differentiable
throughout the number scale. Find f’ (x):

Foy=+1)*(x—32+3x(x+1)2x—3)>+2x(x+1)* %
X(x—3)=3 (x4 12 (x—3)(2x*—3x—1).
Equating this expression to zero, we find the critical points:
x,=—1, x,=(B—=V17)/4, x,=(3+V 17)/4, x,=3.

Let us tabulate the signs of the derivative in the intervals be-
tween the critical points:

Intervals x < Xy X < X< Xy | X, <x< X3 | Xy < x< Xy Xy < x

Sign of )’ (x) — ’ — + _ -+ :

As is seen from the table, there is no extremum at the point
x,=—1, there is a minimum at the point x,, a maximum at the
point x,, and a minimum at the point x,.

3.6.2. Using the first derivative, find the extrema ol the follo-
wing functions:

(@) f()=3) ¥—x5

(b f @)=V o=+ (x+ D

Solution. (a) The function is defined and continuous throughout

the number scale.
Let us find the derivative:

fr(x)= 2(:5/1—;—x> .

From the equation f'(x)=0 we find the roots of the derivative:

x== 1.
Furthermore, the derivative goes to infinity at the point x=0.
Thus, the critical points are x,=—1, x,=0, x,=1. The results
of investigating the sign

AN /4\ L of the derivative in the
- 1\_/0 N z neighbourhood of these
points are given in Fig.

Fig. 40 40. The investigation

shows that the function
has two maxima: f(—1)=2; f(1)=2 and a minimum f (0)=0.

3.6.3. Using the second derivative, find out the character of the
extrema of the following functions:
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(a) y =2 sinx+ cos 2x;

(b) f(x)=2x*— 15x*—84x+ 8.

Solution. (a) Since the function is a periodic one we may confine
ourselves to the interval [0, 2x]. Find the first and second deri-
vatives:

y' =2cos x—2sin 2x =2 cos x (1 — 2 sin x);

y'=—2sinx—4cos 2x.

From the equation 2cosx(l—2sinx)==0 determine the critical
points on the interval [0, 2x]:

x,=u/6, x,=n/2, x,=5n/6, x,=3m/2.

Now find the sign of the second derivative at each critical point:

y' (n/6)=— 3 < 0; hence, we have a maximum y (n/6)=3/2 at
the point x, = n/6;

y' (n/2)==2 > 0; hence, we have a minimum y(7/2)=1 at the
point x, = 1/2;

y" (5m/6) = — 3 < 0; hence, we have a maximum y (5n/6) = 3/2
at the point x,=>5n/6;

y" (3m/2)=6 > 0; hence, we have a minimum y(3n/2)=—3 at
the point x,=3m/2 (see Fig. 41).

4
[ S——
T " Jr
| ! 1 1 ] T
lz = 5z\ | [z
§ 2 6 !
|
_3 __________
Fig. 41

3.6.4. Investigate the following functions for extrema:
_f —2 (x < 0),
@ T =1 5 56=0;
2x*4-3 0
(®) 70 = { : i ng)).'

Solution. (a) Though the derivative

, _[—2(x<0),
FO=\" 3x>0

exists at all points, except the point x=0, and changes sign from
minus to plus when passing through the point x=0, there is no

minimum here:
f0)=5>[(x) at —1<x<0.
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This is explained by the fact that the function is discontinuous
at the point x=0.

(b) Here the derivative f’ (x)=4x (x = 0) also exists at all points,
except at x=0, and it changes sign from minus to plus when pass-
ing through the point x=0. Nevertheless, we have here a maximum
but not a minimum, which can readily be checked.

It is explained by the fact that the function is discontinuous at
the point x=0.

3.6.5. Find the extrema of the following functions:
50 )
@) F)=sarse—Tse o0’
(b) )=V e’ —1.
Solution. (a) Here it is simpler to find the extrema of the func-
tion f, (x) = 3x* -+ 8x*—18x2 4 60. Since
f1(x) =12x> + 24x% —36x = 12x (x* + 2x—3),
fi(x) =12 (3x2 4- 4x—3),

the critical points are:

x=—238, x,=0, x,=1,

and the character of the extrema is readily determined from the
sign of the second derivative f] (—3) > 0; hence, at the point x, =—3
the function f,(x) has a minimum, and the given function f(x)
obviously has a maximum f(—3)=—2/3, f;(0)<0; hence, at
the point x,=0 the function f,(x) has a maximum, and f(x) a
minimum f(0)=5/6; f;(1)> 0; hence, at the point x;==1 the
function f,(x) has a minimum, and f(x) a maximum f(1)=50/53.

(b) In this case it is easier to find the points of extremum of
the radicand \

fl (x)=ex —1’

which coincide with the points of extremum of the function f (x).
Let us find the critical points of f, (x):

fi(x) = 2xe**; f;(x)=0 at the point x=0. Determine the sign of
the second derivative at the point x=0:

fi (x)=2¢*" (14-2¢), f1(0)=2>0.
Therefore the point x=0 is a minimum of the function f, (x); it
will also be a minimum of the given function f(x): f(0)=0.

3.6.6. Investigate the character of the extremum of the function
y=coshx-4cosx at the point x=0.

Solution. The function y is an even one and apparently has an
extremum at the point x=0. To determine the character of the
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extremum let us evaluate the derivatives of this function at the
point x=0:
y' =sinhx—sinx, y’ (0)=0;
y"=coshx—cosx, y" (0)=0;
y'"' =sinhx-+sinx, y''" (0) =0;
Yy =coshx--cosx; y* (0)=2>0.
Since the first non-zero derivative at the point x =0 is a derivative
of an even order, which takes on a positive value, we have a mi-
nimum y(0)=2 at this point.

3.6.7. Investigate the following functions for an extremum at
the point x=0:
3

2 2
(@) y=cosx——1+’;_!_;_!; (b) y=cosx—l+%-.
Solution. (a) y’=——sinx—}—x—%z; y' (0)=0;
y'=—cosx+1—x; y" (0)=0;
y’”:Sinx—l; ylll (0):_1#0.

And so, the first non-zero derivative at the point x=0 is a deri-
vative of the third order, i.e. of an odd order; this means that
there is no extremum at the point x=0.

3.6.8. Investigate the following functions for extrema:

(a) f(x)=x%"*"; (b) f(x)=sin3x—3sinx.

Solution. (a) The function f(x)=x%~*" is continuously differen-
tiable everywhere. Equating the derivative

! (x) = 4xPe=*"— 2xPe=*" = x%~** (4— 2x")
to zero, find the critical points:
X, = —V'2; x,=0; x,= V2.
Compute the values of the second derivative at the critical points:
7 (x) = 12x%~*" — 8xte~** — 10x%e=*" - 4xbe=*" =
= 2x%~ %" (6—9x% - 2x*);

Foy=0 "(—V2)<o; f(/2)<o.

Consequently, at the points x, =—}/2 and x,= -+ /2 the function
reaches a maximum [ (- l/§)=4e"2-_—:7. As far as the critical

point x,=0 is concerned, nothing definite can be said as yet, we
have to find derivatives of f(x) of higher orders (up to the fourth
order!). But this process is cumbersome, therefore we will turn to
the first sufficient condition of an extremum: let us find the signs
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of the first derivative in the neighbourhood of the critical point

x, =0:
[ (=1 <0; (1) >0.
Hence, at the point x=0 the function has a minimum f(0)=0.
3.6.9. The function y={(x) is represented parametrically:

[ x=¢()=1t>—5t*—20( -7,
| y=1p () =4>—3t>— 18 -3 (—2 <t < 2).
Find the extrema of this function.

Solution. We have
@' (t) =5t — 15¢2—20.

In the interval (—2, 2) ¢’ (¢{) #0.
Find ¢’ (f) and equate it to zero:

Y (t) =122 —6f — 18 =0.

Whence f{,=—1 and ¢,=3/2.
These roots are interior points of the considered interval of va-

riation of the parameter {.
Furthermore:

¢ (1) =24t —6; § (—1)=—30<0, ¥ (3/2)=30>0.

Consequently, the function y=f(x) has a maximum y=14 at
t=—1 (i.e. at x=31) and a minimum y=—17.25 at t=23/2
(i. e. at x=—1033/32).

3.6.10. Find the maxima and minima of the following functions:

@ [ ()= (b) [ (x) = 5y

© FO=—2YE=2% (A [0 —a—gary

(e) f(x)= f/2x3—|—3x2—36x;

(f) f()=x*Inx; (g) f(x)=xIn?x.

3.6.11. Investigate the following functions for an extremum at
the point x=0:

(a) f(x)=sinx—ux; (b) f(x)=sinx—x+x*/3;

(© F()=sinx—x+5 —2;

eVx, if x50,
@ f(")={ 0, if x=0.
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§ 3.7. Finding the Greatest and the Least
Values of a Function

The greatest (least) value of a continuous function f(x) on an
interval [a, b] is attained either at the critical points, or at the
end-points of the interval. To find the greatest (least) value of the
function we have to compute its values at all the critical points
on the interval [a, b], the values f(a), f(b) of the function at the
end-points of the interval and choose the greatest (least) one out
of the numbers obtained.

If a function is defined and continuous in some interval, and if
this interval is not a closed one, then it can have neither the
greatest nor the least value.

3.7.1. Find the greatest and the least values of the following
functions on the indicated intervals:

(@) f(x)=2x*—3x*—i12x+1 on [—2, 5/2];
(b) f(x)=x%Inx on [I, e];
(c) [ (x)=xe"* on [0, + oof;
(d) F)=V{T—=x)(1+25% on [—1 1].
Solution. (a) Find the derivative ' (x):
I (x) =6x2—6x—12.
It vanishes at two points: x, = —1 and x,=2. They both lie in-

side the indicated interval [—2, —“:’—J ; consequently both of them
must be taken into consideration. To find the extreme values of
the function it is necessary to compute its values at the points

x, and x,, and also at the end-points of the segment:
5 1
f(—2)=—3, f(—=1)=8; [(2)=—19, f(7>=_167,

Hence, the greatest value is f(—1)=8 and the least f(2)=— 19.

(b) Find the critical points: f'(x)=x(1+2Inx). The derivative
[’ (x) does not vanish inside the given interval [1, e]. Therefore
there are no critical points inside the indicated interval. It now
remains to compute the values of the function at the end-points of
the interval [I, e]

F(1)y=0; f[(e)y=e

Thus, f(1)=0 is the least value of the function and f(e)=e? the
greatest.

3.7.2. Find the greatest and the least values of the f[ollowing
functions on the indicated intervals:

(a) y=sinxsin2x on (— oo, co);
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(b) y=arccosx® on [—V'2/2, V'2/2];

(©) y=x+Vx on [0, 4].

Solution. (a) Represent the function y=sinxsin2x in the form
_ COS x—C0s 3x
=,

whence it is seen that the function is an even one and has a pe-
riod 2n. Hence, it is sufficient to seek the greatest and the least
values among the extrema on the interval [0, n]. Find the deri-
vative y':

Y =% (3 sin 3x —sin x).

In [0, =] the derivative vanishes at the points
x, =0, x2=arccos—l— X, = arc cos(—T/%), X,=T.

Vs’

Compute the values of the function at these points:
I 4
y(0)=y () =0, y[arccos<i%—>]_im_

Hence, the least value of the function in the interval (— oo, o)
is equal to —4/(31/3), and the greatest to 4/(3 1/3).

3.7.3. The function
F)=ax+2 (a, b, x>0)
consists of two summands: one summand is proportional to the

independent variable x, the other inversely proportional to it.

Prove that this function takes on the least value at x=)"b/a.
Solution. Find the roots of the derivative f’(x) in the interval
(0, o0):
, b
]c (x)=a—?=0

at x=V bja(x > 0). Since f"(x)=2b/x* >0 for any x > 0, the func-
tion f(x) reaches a minimum at this critical point. This is the
only exiremum (minimum) in the interval (0, oo). Hence, at
x=1)/b/a the function f(x) attains the least value.

3.7.4. As a result of n measurements of an unknown quantity
x the numbers x,, x,, ..., x, are obtained.

It is required to find at what value of x the sum of the squares
of the errors

[() = (e—x, ) (r— )P oo (F— )

will be the least.
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Solution. Compute the derivative
Frx) =2 (—x) + 2 (x— ) .. 2 (x—x,).
The only root of the derivative is

XX X,
P .

X =

Then, for all x we have f"(x)=2n > 0. Therefore, the function
f(x) has its minimum at the point

X om XpHXy 4+ X,
—

Being the only minimum, it coincides with the least value of
the function (cf. Problem 1.3.8).

And so, the best (in the sense of “the principle of the minimum
squares”) approximate value of an unknown quantity x is the arith-
metic mean of the values x,, x,, ..., x,.

3.7.5. Find the largest term in the sequence

a, =t
n 34200 °

Solution. Consider the function f(x)= in the interval

[1, oo). Since the derivative

X2
x3 200

, __ x(400—x?)
/" () =t a00p

is positive at 0 < x< }/400 and negative at x> /400, the

function f (x) increases at 0 < x < }/400 and decreases at x >/ 400.

From the inequality 7 <}/ 400 < 8 it follows that the largest term
in the sequence can be either a, or a4. Since a, =49/543 > a, = 8/89,
the largest term in the given sequence is

49
a,—-gﬁ.

3.7.6. Find the greatest and the least values of the following
functions on the indicated intervals:

(a) f(x):%x‘—%,v”—%xz—l—? on [—2, 4];
(b) f(x)=V4—x* on [—2, 2];
1 | -
(c) f(x) =arc tan x— Inx on [W I/S];
(d)f(x)=2sinx+ sin2x on [0, —g—nJ;

6 —3148
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(e) f(x)=x—2Inx on [1, e];

2
2 .
0 f0)- { 2xl—|—x2 ffor —20<x<0, 0<x<?,
or x =Vu.

§ 3.8. Solving Problems in Geometry and Physics

3.8.1. The force of a circular electric current acting on a small
magnet with the axis perpendicular to the plane of the circle and
passing through its centre is expressed by the formula

. Cx
@+
where a =radius of the circle
x =distance from the centre of the circle to the magnet
(0 < x < o0)
C = constant.
At what x will the value of F be the greatest?
Solution. The derivative
a%— 2x?
(a2+x2)b/’
has a single positive root x=a/})/'2. This solves the problem.
Note. 1t often happens that reasons of purely physical or geo-
metric character make it unnecessary to resort to the differential

methods in investigating a function for the greatest or the least
value at the point under consideration.

F'(x)=C

3.8.2. Determine the most economical dimensions of an open-air
swimming pool of volume 32 m® with a square bottom so that the
facing of its walls and bottom require the least quantity of ma-
terial.

Solution. Let us denote the side of the bottom by x and the
height by y. Then the volume V of the pool will be

V =x2y=232, *)
and the surface S to be faced
S = x? 4 4xy.

Expressing y through x from the relation (*), we get
S=x2+4xi—;=x"+$.

Investigate the function thus obtained for a minimum in the
interval (0, oo):
128

S’=2x—@; 2%——=0; x=4.
X X
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The single point thus found will obviously yield the least value
of the function S, since it has no greatest value (it increases un-
boundedly as x — 0 and x — o).

And so, the required dimensions of the pool are: x==4 m, y =2 m.

3.8.3. Inscribe into a given sphere a cylinder with the greatest
lateral surface.

3.8.4. 20 m of wire is available for fencing off a flower-bed
which should have the form of a circular sector. What must the
radius of the circle be if we wish to have
a flower-bed of the greatest possible surface Y
area?

Solution. Let us denote the radius of the
circle by x, and the length of the arc by y
(see Fig. 42). Then > T

20=2x+4y, 0

y=2(10—x). Fig. 42
The area of the circular sector S=%xy=x(10—x) (0 <2< 10).
The derivative S’ (x)=10—2x has a root x=5.
Since the least value S=0 is reached at the end-points of the

A interval [0, 10], the obtained value
~ x=1>5 yields the greatest surfacearea S.

whence

] 3.8.5. It is required to construct
an open cylindrical reservoir of capa-
city V,. The thickness of the material
is d. What dimensions (the base radius
and height) should the reservoir have
so as to ensure the least possible
expenditure of the material?

Solution. Figure 43 represents a lon-
gitudinal section of the reservoir,
where the radius of the base of the
inner cylinder is denoted by x and
Fio. 43 the height of the inner cylinder,

& by h. The volume of the bottom
and the wall of the reservoir

V=n(x+drd+a[(x+d?—x*)h=nd (x+d)*+nh(2xd+d*). (*)
On the other hand, by hypothesis we must have
V,=nxh

- ———————-
8
Y

/

whence
W
mx?”
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Substituting into (*), we get

V =ad (x+d)*+ "V"

5 (2xd + d?) = nd (x +d)? +

2Vnd + V;.:i“ )

Now we have to investigate the obtained function V (x) for an

extremum at x > 0.
We have

V' (x)=2nd (x +d)—

2V0d _Ved®  2d (x+4-d) (x3—V,)

x3 x3

The only positive root of the derivative is the point x = ;/V jx.

This solves the problem:

h= "0'/“2 VAT

3.8.6. A factory D is to be connected by a highway with a

straight railway on which a

y/j

R

2

S

7/ |

/ |

Vi a

/ 1

// |

s i

—Om o &
A T P B

Fig. 44

town A is situated. The distance DB
from the factory to the railway is
equal to a, the segment AB of the
railway equals ;. Freight charges on
the highway are m times higher than
on the railway (m > 1).

How should the highway DP be
connected with the railway so as to
ensure the least freight charges from
factory to town?

Solution. First, let us make a draw-
ing (see Fig. 44). It is absolutely
clear that the highway must also be

straight (a straight line is shorter than any curve connecting two

given points!). Furthermore,

the point P cannot lie either to the

left of the point A or to the right of the point B. If we denote
the distance AP by x, it will mean that 0 <Cx<Cl.

Let the freight charges on the railway (per ton-kilometre) be &,
then the freight charges on the highway will be km. The total
freight charge N for transporting loads from D to A amounts to

N =kx-+kmV a* + (| —x)%
Hence, we have to find the least value of the function

f)=x+mVa+x—13 0<x<L

Take the derivative

['x) =1+

m(x—1)

Vata—h
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It vanishes only at one point:

a

X=l—

Vm2~l '
If this point lies in the interval [0, /], i.e. if

> or lﬂgl/mz—l,

a
Y m2—1
then it yields the least freight charge (which is easy to check).
Ii the indicated inequality is not observed, then f(x) increases on
[0, 7] and therefore the least freight charge is obtained at x=0.

3.8.7. In constructing an a-c transformer it is important to insert
into the coil a cross-shaped iron core of greatest possible surface
area. Fig. 45 shows the cross-section
of the core with appropriate dimen-
sions. Find the most suitable x and
y if the radius of the coil is equal
to a.

3.8.8. If the source of current is an =
electric cell, then the effect P (watts)
obtained by cutting a resistance R
(ohms) in the circuit is expressed by
the formula

p—_ER
T (R+R)Y’ Fig. 45

where E is electromotive force in volts and R; the internal resis-
tance in ohms.
Find the greatest effect which can be obtained at given E and R,.

3.8.9. A tin of a given volume V has the form of a cylinder.
What must be the ratio of its height A to diameter 2R so as to
use the least amount of material for its manufacture?

3.8.10. In a given cone inscribe a cylinder having the greatest
lateral surface so that the planes and centres of the base circles
of the cylinder and cone coincide.

3.8.11. Given a point (I, 2) in the orthographic coordinates.
Through this point draw a straight line so that it forms, together
with the positive semi-axes, a triangle of the least area.

3.8.12. Given a point M on the axis of the parabola y*:==2px
at a distance a from its vertex. Find the abscissa of the point
on the curve nearest to the given point.
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3.8.13. The expenses sustained in one hour’s sailing of a ship
are expressed in roubles by an empirical formula of the form
a--bv*, where a and b are constants for a given ship, and v is the
ship’s speed in knots (one knot is equal to 1.85 km/hr). In this
formula the constant part of the expenses a refers to depreciation
and crew’s upkeep, and the second term (bv®) to the fuel cost.
At what speed will the ship cover any required distance at the
lowest cost?

3.8.14. A trough is built from three boards of equal width. At
what slope should the lateral boards be placed to ensure the largest
cross-sectional area of the trough?

3.8.15. A tank with a vertical wall of height & is installed on
a horizontal plane. Determine the position of an orifice, at which
the range of a liquid jet will be the greatest if the velocity of
flow (according to Torricelli’s law) is equal to V/2gx, where x is
the depth of the orifice.

3.8.16. Two aircraft are flying in a straight line and in the
same plane at an angle of 120° to each other and with an equal
speed of v km/hr. At a certain moment one aircraft reaches the
point of intersection of their routes, while the second is at a dis-
tance of a km from it. When will the distance between the
aircraft be the least and what is that distance?

§ 3.9. Convexity and Concavity of a Curve. Points of
Inflection

If f"(x) <0 (>0) on an interval (a, b), then the curve y=F(x)
on this interval is convex (concave), i.e. it is situated below (above)
any of its tangent lines.

If f"(x,) =0 or does not exist but f’(x,) does exist and the second
derivative f”(x) changes sign when passing through the point x,,
then the point (x,, f(x,) is the point of inflection of the curve
y =T (x).

3.9.1. Find the intervals in which the graphs of the following
functions are concave or convex and locate the points of inflection:

(a) y=x*+4x*—18x* 4 24x—12;
(b) y==3x*—8x3+6x2+4 12;
x .
(c) y=1ra
(d) y=x—+x""s;
(€) y=4V E—1PF+20V/ Z—1P (x> 1);

In? x

M) y=" (x> 0)
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(8) y=xsin(Inx) (x > 0);
(h) y=2—|x*—1]|.
Sojution. (a) Find the derivatives:

y' =4x®+ 3x* —36x + 24,
Y =120+ 6x—36— 12+ 5 —3),

whence y"=0 at x,=—2, x,=3/2.

Hence, y” > 0 on the intervals (—oo, —2) and (3/2, o); ¥y’ <0
on the interval (—2, 3/2). The sign of the second derivative deter-
mines the convexity or concavity of the curve in a given interval.

This enables us to compile the following table:

3 3
—2 | = > =
X x < 2<x<2 x>2

Sign of y” —+ — +

Conclusion | Concavity | Convexity | Concavity

Since the second derivative changes its sign when passing through
the points x,=—2 and x,=3/2, the points (—2, —124) and
3 1 . . .
5 —813 are points of inflection.
(d) Find the derivatives:

5 10
':1 __xz/s ”= — .
=145, y 7%

The second derivative is non-zero everywhere and loses its meaning
at the point x=0. At x <0 we have y” < 0 and the curve is con-
vex, at x > 0 we have y” >0 and the curve is concave.

At the point x=0 the first derivative y’=1, the second deriva-
tive changes sign when passing through the point x=0. Therefore
the point (0, 0) is a point of inflection.

(g) Find the derivatives:

y' =sin(Inx)+ cos (In x),
y”=)lc— [cos (In x) —sin (In x)] =£xg sin (%—lﬂ X> .
The second derivative vanishes at the points
xp=eVatkn =0, 41, =2, ... .

The function sin(n/4 — Inx), and together with it y”, changes sign
when passing through each point x,. Consequently, the points x,
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are the abscissas of the points of inflection. In the intervals
(ezkn—:m/a;’ ez/m+n/4)

the curve is concave, and in the intervals
(ezkn+n/4, ezkn+5n/4)

it is convex.
(h) The given function can be written in the following way:

2—(x*—1), x=1,
={ 24+ (x> —1), x<L1.
Therefore
, | —5x4, x> 1,
y Z] oxt, x< 1.
At the point x=1 there is no derivative. Further,
. —20x%, x>1,
=\ 20w, x<
y' =0 at the point x=0. Hence, we have to investigate three in-

tervals: (—oo, 0), (0, 1), (1, oo).
Compile a table of signs of y"

X x<0 0<x< 1 x> 1

Sign of y” — —+ —

Conclusion | Convexity | Concavity | Convexity

The point (0, 1) is a point of inflection, the point (1, 2) being
a corner point.

3.9.2. What conditions must the coefficients a, b, ¢ satisfy for
the curve y=ax*+bx®*+cx*+dx+e to have points of inflection?
Solution. Find the second derivative:

y" = 12ax®+ 6bx + 2c.
The curve has points of inflection if and only if the equation
6ax? - 3bx+-c=0
has different real roots, i.e. when the discriminant 96* — 24ac > 0, or
362 — 8ac > 0.
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3.9.3. At what values of a will the curve
y=x4—|~ax“+—g—x’3+ 1
be concave along the entire number scale?
Solution. Find y"
y" = 12x*4- 6ax -+ 3.
The curve will be concave along the entire number scale if y" =0
for all values of x, i.e. when
4x*+2ax+4-1 >0 for all x.
For this it is necessary and sufficient that the inequality 4a> — 16 <C 0
be fulfilled; whence
la]<<2.

3.9.4. Show that the curve yrﬁ% has three points of inflec-
tion lying in a straight line. '
Solution. Find the derivatives:
;o —xt—=2x41
¥y =Ty
,  2x% - 6x*—6x—2
(x2- 1)3
The second derivative becomes zero at three points, which are the
roots of the equation
x*F3x*—3x —1=0,
whence

X, =—2—V38, x,—=—24+13, x=1

Let us compile the table of signs of y":

< X< |—2-V B<i<| 21 V3 < | <
X — pa— x < oo
<—2—V3 | <—2:V73 <x <l h
Sign of y” -- L — 4+
Conclusion Convexity Concavity Convexity Concavity |

Hence, (——2— V'3, —&—L>, <—2+l/3—, H-V—?;),(l» 1)

4 4
are points of inflection. It is easy to ascertain that all of them
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lie in a straight line. Indeed, the coordinates of these points satisfy
.2V 3—1 (1—V3)4-1
the relation — = — .
O S I T (r vV a)ar1

3.9.5. Investigate the curves represented by the following equa-
tions for convexity (concavity) and locate the points of inflection:

(a) y=x— /(x — 3)%
(b) y=ein ¥ (—q/2 << x < /).

3.9.6. Show that the points of inflection of the curve y=xsinx
lie on the curve y2 (44 x?) = 4x2.

§ 3.10. Asymptotes

A straight line is called an asymptote to the curve y=f(x) if
the distance from the variable point M of the curve to the straight
line approaches zero as the point M recedes to infinity along some
branch of the curve.

We will distinguish three kinds of asymptotes: vertical, horizon-
tal and inclined.

Vertical asymptotes. 1f at least one of the limits of the function
f (x) (at the point a on the right or on the left) is equal to infi-
nity, then the straight line x=a is a vertlcal asymptote.

Horizontal asymptotes. If lim f(x)=A, then the straight line

-+ ®
= A is a horizontal asymptote (the right one as x— 400 and
the left one as x — — o0).
Inclined asymptotes. If the limits

lim 19—k,  lim [f(x)—kx]=b,

X = 4+ © X X -+ + ®
exist, then the straight line y==4k,x+b, is an inclined (right)
asymptote.

If the limits
lim M=k, and  lim [f(x) —ka]=0,
X—> —® X+ -
exist, then the straight line y=~k,x--b, is an inclined (left) asymp-
tote. A horizontal asymptote may be considered as a particular
case of an inclined asymptote at £=0.

3.10.1. Find the asymptotes of the following curves:
5
"= (b) y=—

(d) y=-;+4x2; (e) y=xe

x .
Toxt1
3 ! |

i () y:—-gxlnke—g);

(@ y=-

1
X
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(g) y= V' 1T+ x2+2x; (h) y=l/l —|—x23i1171;
(i) y=2V x*+4.
Solution. (a) The curve has a vertical asymptote x=3, since

. . 5x —
lim y= lim 5=F
X>3F0 x>3F 0%

(the point x=3 is a point of discontinuity of the second kind).

Find the horizontal asymptote:

5x
x—3

lim y= lim =5.

X+ » X+ 4+ ®

And so, the curve has a vertical asymptote x=3 and a horizon-

tal one y=>5.
(b) The curve has a vertical asymptote x=1, since
. 3x gh1
x.{llm-oyzx.l.llm o(x—l+3x)—‘-°°’ iwl
|
lim y= li ( 3x) = + oo. |/
x-»lm+0y x-»lm+0 x_']+ x) T E/
Find the inclined asymptotes: {l//
/‘
k= lim L= lim (-2 +3)\=3 l
X—}Tm x x-:Too (x'_1+ ) 3’ 3 /E
b= lim (y—kx)= / !
x> E> 0] | 1
. 3x I\ 2
= lim (—+43x— 3x)=3.
X+ ® (x_l+ ) /// E

Thus, the straight line y=23x4-3 is an .
inclined asymplote (see Fig. 46). Fig. 46
(e) The curve has a vertical asymptote x=0, since

. . . t

lim y= lim xe'*= lim e_=+°°
x->+0 x->+0 1 t
t:—x——b-}-o)

(see Problem 3.2.2.).
Find the inclined asymptotes:

k= limn L= lim evr—=g0 = 1;
X - 4+ ® X—> 4+ o

. . /x__

b= lim (xeV*—x)= lim ¢ l_ lim
x>t ® Xt ® 1/x 1/x=2->0 2
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Thus, the straight line y=x+1 will be an inclined asymptote
of the curve (see Fig. 47). Note that

lim y= lim xeV*=0.

x->-0 x-+—-20

(I) The function is defined and continuous at e— %{ >0, i.e. at

x < 0 and x>é.

Since the function is continuous at
every point of the domain of definition,
vertical asymptotes can exist only on
finite boundaries of the domain of defini-
tion.

As x — —0 we have

lim y= lim < 3" < )

x> =0 x> =0

=———2- lin In(e'“’ 0( )

2+ >

(see Problem 3.2.2.), i. e. the straight

Fig 47 line x=0 is not a vertical asymptote.

]
As x——»c,;—i—o we have

. 3 . 1
lim y=+ lim xin{e—gz )= —oco,
x> 1/(30)+0 2 4>1/3e)+0 3x

i. e. the line x=1/(3¢) is a vertical asymptote.
Now let us find the inclined asymptotes:

- ¥ _3 ___1)_1.
b= lin gy Jin in(eg) =7
3 ’ 1
b= lim —kx]=~ lim x[ln(e——)—l] =
x—»‘iw[y ] 2x->j:oo 3x
|
3 '"(“%) 3( 1) 1
== lin ———F =< —z)=—5.
2 o 1 2 3e %

Hence, the straight line y=37x—2le is an inclined asymptote
(see Fig. 48).

(g) The curve has no vertical asymptotes, since the function is
continuous everywhere. Let us look for inclined asymptotes. The
limits will be different as x — 4 oo and x — — oo, therefore we have
to consider {wo cases separately.
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Find the right asymptote (as x -- -+ oo):

k= lim K‘M_ lim 3
X—+ o X->+ ®©
= lim (V' 1+ x+2x—3x)=
X+ ®

= lim [V T+2—x|= lim 0= .

X—+ 0 x>+ Vl-:—x2+x

Thus, as x — -+ oo the curve has an asymptote y=23x.

Fig. 48

Find the left asymptote (as x — —oo):

1
[x] =+ 1+2
k2 w_ lim l/-xz =1,
X—> =® X—>—® X
by= lim |V T+ +2x—x|= lim Lo,
X—>=® x> = I+ x2—x

since both summands (/T4 #* and (— x)) in the denominator are
positive at x < 0.

And so, the curve has an asymptote y=x as x — —oo.
(h) The curve has no vertical asymptotes, since it is continuous

at xs=0, and in the neighbourhood of the point x =0 the function
is bounded.

Let us find the inclined asymptotes. We have

| x| ]/l—{-——sm

k= lim 7— lim =4 1-0=0.

x>+ ® X+ ®
Then

. . T . 1 [ 1 as x — 4+ o0,
b= lim (y—kx):xilfw]x| ]/l+731n7=1

et — 1 as x — —oo.
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Thus, the curve has two horizontal asymptotes: y =-- land y ==— 1
(see Fig. 49). The same result can be obtained proceeding from
symmetry about the origin and keeping in mind that the function
y is odd.

3.10.2. Find the inclined asymptote of the graph of the function
y=1ix as x— oo and show that in the interval (100, oco) this

function may be replaced by the linear function y=x—1 with an
error not exceeding 0.01.
Solution. Find the inclined asymptote:

k= lim i =1
b=lim [ 2——x)=—1.
x32<1+ )

And so, the equation of the asymptote is y=x—1.
Form the difference:

§—_*

2 1
I+x

[

—(x—1)=

Hence, assuming

——i""x—l
y—l—i—xN ’

for all x > 100, we introduce an error of not more than 0.01l.

3.10.3. Find the asymptotes of the following curves:

a) =w; (b) y=xarctanx;
y x—3

(¢) y=x+(sinx)/x; (d) y=In(4—x?);
(e) y=2x—arccos—;—.

§ 3.11. General Plan for Investigating Functions and
Sketching Graphs

The analysis and graphing of functions by elementary methods
were considered in Chapter I (§§ 1.3 and 1.5). Using the methods
of differential calculus, we can now carry out a more profound and
comprehensive study of various properties of a function, and explain
the shape of its graph (rise, fall, convexity, concavity, etc.).

It is convenient to investigate a function and construct its graph
according to the following plan:

1. Find the domain of definition of the function.

2. Find out whether the function is even, odd or periodic.
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3. Test the function for continuity, find out the discontinuities
and their character.

4. Find the asymptotes of the graph of the function.

5. Find the points of extremum of the function and compute the
values of the function at these points.

6. Find the points of inflection on the graph of the function,
compute the values of the function and of its derivative at these
points. Find the intervals of convexity of the graph of the function.

7. Graph the function using the results of this investigation. If
it is necessary to specify certain regions of the curve, calculate the
coordinates of several additional points (in particular, the x- and
y-intercepts).

This is a very tentative plan, and various alternatives are pos-
sible. For instance, we recommend the student to begin sketching
the graph as soon as he finds the asymptotes (if any), but in any
case before the points of inflection are found. It should be remem-
bered that in sketching the graph of a function the principal refe-
rence points are the points of the curve corresponding to the extremal
values of the function, points of inflection, asymptotes.

3.11.1. Investigate and graph the following functions:
(@) y=x*—3x*+3x2—5; (b) y=1 x—} X+ 1;

23 1—x

© Yy=p—g: (d) y=-—%—;

(e) y=x-+In (x2—1); () y=%sin2x+cosx;
(8) y=xel/x (h) y———arcsin]l—_l__%:.

Solution. (a) The function is defined and continuous throughout
the number scale, therefore the curve has no vertical asymptote.
The function is even, since f(— x)=f(x). Consequently, its graph
is symmetrical about the y-axis, and therefore it is sufficient to
investigate the function only on the interval [0, o).

There are no inclined asymptotes, since as x — oo the quantity
y turns out to be an infinitely large quantity of the sixth order
with respect to x.

[nvestigate the first derivative:

Yy =06x°—12x3 4 6x =6x (x* —2x2 4 1) =6x (x2— 1)
the critical points are:
xw=—1, x=0, x=1.

Since in the interval [0, co) the derivative y’ >0, the function
increases.
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Investigate the second derivative:
Yy =30x*—36x%+6=06(bx*—6x2 4 1).
The positive roots of the second derivative:
X, =1V5, x,=1

For convenience and pictorialness let us compile the following
table, where all the points of interest are arranged in an ascending
order:

Aelem| w ||

y | NI A -4.51 7’:,4 23

On the right one more additional value of the function is com-
puted to improve the graph after the peint of inflection.

Using the results of the investigation and the above table and
taking into consideration the symmetry principle, we construct the
graph of the function (see Fig. 50). As is seen from the graph, the
function has roots x= 4 a, where a ~ 1.6.

(b) The function is defined and continuous over the entire number
scale and is negative everywhere, since }/x < 3/ x+ .

The graph has neither vertical, nor inclined asymptotes, since the
order of magnitude of y is less than unity as x — oo. Determine
the horizontal asymptote:

lim y= lim (/' x—}/ x+1)=
X+ ® X+

P — =0.
oo )/ A Y X DA o T
Hence, the straight line y =0 is the horizontal asymptote of the
graph.
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The first derivative
S D D A a i et A
YRR Gy sy rar

becomes zero at the point x,= ———% and infinity at the points
x=—1, x,=0.
¥
T T
T4 20 1
~1
Fig. 50 Fig. 51
The second derivative
(=) et (= 2) L VA D
Y=\ T3 yE 3\ TR e sy Gk P
does not vanish and is infinite at the same points x,=—1, x,=0.

Compile a table:

1 1 ! 1
X —1 (——l, ——é) -3 \——2—,0)4 0 (0, o) 1

0 + © l +

y -1 : -5 / - —0.26

With the aid of this table, and of the asymptote y =0 construct
the graph of the function (see Fig. 51).
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(c) The function is defined and continuous over the entire axis
except at the points x= 4 2. The function is odd, its graph is
symmetrical about the origin, therefore it is sufficient to investigate
the function on the interval [0, oo).

The straight line x=2 is a vertical asymptote:

. . 2x3
lim 2 = _—o0; lim =+ oo
x-2-0 x*—4 T xo240 X4 1
Determine the inclined asymptote:
. . 2x?
k= lim L= lim =2
X+ ® X-> 4+ x2—4 ’
. . 8
b= lim (y—2x)= lim —zx—=0.
X +® x> +® X —4

"The curve has an inclined asymptote y=2x, and

9. 8 >0 at x >2,
y 2"“:c2—4{<0atx<2

The first derivative
p_ 6x% (x2—4)—4x* 2% (x2—12)
V= "=  ~ e—

in the interval [0, oo) vanishes at the points
x=0, x=2) 3~3.46

and becomes infinite at the point x=2.
The second derivative

n_ 16x (x2+12)
T4
‘becomes zero at the point x=0 and infinite at x=2.
Compile a table:

X 0 . 2 2 (@2 2¥V3)| 2V3 |@QV3, «
y' —0 — © — 0 -+
y +0 | - oo — 3V +
0 !
y S —_" N
N\
[}
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Using the results of the investigation, sketch the graph of the
function (see Fig. 52).

(e) The function is defined and continuous at all values of x for

which x¥*—1>0 or |x|>1, i.e. on two intervals: (—oo, —1)
and (1, -4 o0).
i Y
| A
| | }
| ! i
I | |
| e
41, I Il
| s | i
21 A0\ 12 o VT |
P |
S
/5 ! { I
7, ! | I
Y/, |
Y/ |
y7 |
Fig. 52 Fig. 53

We seek the vertical asymptotes:
lim y= lim [x+In(x*—1)]=— oo;

x->-1-0 x>=1-0
lim y= lim [x+4In(x*—1)]=— oo.
x->1+0 x>1+0

Thus, the curve has two vertical asymptotes:
x=—1 and x=+1.
Find inclined asymptotes:

k= lim L= fim *®=D_ 3y [1+“‘("2‘”] 1,
x—»;l;oox X— 4+ o x X —> 4+ @
= lim [y—x]= lim In(x*—1)= + oo.

X—>+ X—> 4+ ®

Hence, the curve has neither inclined, nor horizontal asymptotes.
Since the derivative

’ 2
!/-——l—f-xT_il—

exists and is finite at all points of the domain of definition of the
function, only the zeros of the derivative

Xy =—1—=V2 x=—1+V7
can be critical points. At the point x,= —1+4}/2 the function is
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not defined; hence, there is one critical point x,=— 1—}/2 belon-
ging to the interval (—oo, —1). In the interval (1, oo) both the
derivative y’ > 0 and the function increase.
The second derivative
"__ 2 (X2+ 1)
Yy =— (x2—1)?

<0,

hence, the curve is convex everywhere, and at the point x, =
= —1—})2~—2.41 the function has a maximum

y(—1—VDr—1—V2+In2+2/2) ~—0.84.

To plot the graph in the interval (1,00), where there are no characte-
ristic points, we choose the following additional points:

x=2; y=24+1In3~3.10 and x=1.2; y=1.2+4+1n0.44 =~ 0.38.

The graph of the function is shown in Fig. 53.

(f) The function is defined and continuous throughout the num-
ber scale and has a period 2mn. Therefore in investigating we may
confine ourselves to the interval [0, 2n]. The graph of the function
has no asymptote by virtue of continuity and periodicity.

Find the first derivative:

Yy =cos 2x—sin x.
On the interval [0, 2x] it has three roots:

n 5n 3n
X|=€, )C2=F, X3=—2-.

Evaluate the second derivative:
Y’ = — 2sin 2x—cos x.
On the interval [0, 2x] it has four roots:

x,=%, x2=n—|—arcsin(l/4),x,=%n, Xy =2n—arcsin (1/4).

Let us draw up a table of the results of investigation of all cri-
tical points of the first and second derivatives (the table also in-
cludes the end-points of the interval [0, 2x]).

Since in the interval (0, %ﬂ the roots of the first and second
derivatives alternate, the signs of the second derivative in the in-
tervals between its critical points are indicated only for the last
three intervals.

The results of the investigation enable us to construct the graph
of the function (see Fig. 54).

(¢) The function is defined, positive and continuous on each of
the intervals (—oo, 0) and (0, o0). The point x=0 is a disconti-
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]
n n 5n 3n 3n 3n .
< lo 5 5 5 x|l ¥ 5 5 |\ 5o ¥ )| X (x4,271) || 2n
, 1 L l—l
y 0 —2 0 3 0 )
1] |
| =230 | 93 o] = 0|« o -

33 -
y174-°T ﬂﬁfg/‘%g_ﬁ #%7'

nuity. Since (see Problem 3.2.2.)

’

t

. . . e 1
lim y= lim x%'*= lim 4 = o0 ( t=—)
x->+0 x> +0 t—>+oot X

the straight line x =0 is a vertical asymptote. But
limy = lim x%'Y*=0.

x> -0 x>-0

There are no inclined asymptotes, <ince the function y= x2e!/x
has the second order of smallness with respect to x as x— 4 oo.

~
S
sy
RN
5

"
1 3 T

0 3_,, 215

-1r

Fig. 54

Let us find the extrema of the function, for which purpose we
-evaluate the derivative:

y/=2xel/x_el/x=261/x(x_1/2)’
‘whence we find the only critical point x=%.
Since for x==0

Y (x)= Qe‘/"——i—e'/x—]— xlze'/"= %e‘/" 2x*—2x4+1)>0,
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on each of the intervals of the domain of definition the graph of
the function is concave, and at the point x=1/, the function has
a minimum

y(é—) =—‘]1—e2 =~ 1.87.

From the information obtained we can sketch the graph as in Fig. 55.
To specify the graph in the intervals (—oo, 0) and (Y/,, oo) the

g following additional points are used:
T x=—1, y=e1x=037, x=1,
y=e~2.72.

(h) The function is defined and continuous

| throughout the number scale, since at any x
| 2
1+ l—x

! = <L
-1 of121 z Since the function is even, we may confine
Fig. 55 ourselves to the investigation of the function
' at x>=0.

As the function is continuous, the graph has no vertical asymp-
totes, but it has a horizontal asymptote:

limy = arcsin (—1)= —%
X+ +®
The first derivatlve
—o (I4x)—2x(1—x2) | ax
v'= /10 (l—xl)- 8 T+ =TIl X T
(E=od

is negative for x > 0, therefore the function decreases.
The derivative is non-existent

at the point x=0. By virtue of V
the symmetry of the graph about T
the y-axis there will be a maxi- 4
mum at the point y(0)=—g—. No- -1 1

I
tice that at the point x=0 the / 0 \
right derivative is equal to —1,
and the left one to +~1. TTTTTTT T T T

The second derivative is posi-
tive: Fig. 56

2 8
Yy (x) =2 2((1—:_;))4]( +);2)3 > 0 for all x> 0.

Hence, in the interval (0, oo) the graph of the function is concave.
Also note that the curve intersects with the x-axis at the points

x=-41.
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Taking into consideration the results of the investigation, con-
struct the graph of the function (see Fig. 56).

3.11.2. Investigate and graph the following functions:
4 4
@ y=14+x—%; (b) y=(,—i~ﬁ,;

x3

© y=%+4x2: (d) 4=

© y=V¥—y ¥—4&
() y=x2In(x+2); (2) y=xe5
fxarctan% at x=0,

h) y=
(g 10 at x=0.

§ 3.12. Approximate Solution of Algebraic
and Transcendental Equations

Approximate determination of isolated real roots of the equation
f(x)=0 is usually carried out in two stages:

1. Separating roots, i.e. determining the intervals [a, B] which
contain one and only one root of the equation.

2. Specifying the roots, i.e. computing them with the required
degree of accuracy.

The process of separation of roots begins with determining the
signs of the function f(x) at a number of points x=a,, «,
whose choice takes into account the peculiarities of the function f(x)

If it turns out that f(e,)f(2,.;) <O, then, by virtue of the
property of a continuous function, there is a root of the equation
f(x)=0 in the interval (a,, a;,,)-

Real roots of an equation can also be determined graphically as
x-intercepts of the graph of the function y=/f(x). If the equation
has no roots close to each other, then its roots are easily separated
by this method. In practice, it is often advantageous to replace
a given equation by an equivalent one

P (x) =1, ),

where the functions +, (x) and v, () are simpler than the function
f(x). Sketch the graph of the functions y=1, (x) and y=1, (x)
and find the desired roots as the abscissas of the points of inter-
section of these graphs.

The Methods of Approximating a Root. 1. Method of Chords. If
the interval [a, b] contains the only real root & of the equation
f(x)=0 and f(x) is continuous on the interval, then the first ap-

proximation x, is found by the formula
_ A C T
= e = )
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To obtain the second approximation x, a similar formula is ap-
plied to that of the intervals [a, x,] or [x,, b], at the end-points
of which the function f(x) attains values having opposite signs. The
process is continued until the required accuracy is obtained, which
is judged of by the length of the last obtained segment.

2. Method of Tangents (Newton’s method). If f(a)f(b) <0, and
f" (x) and f"(x) are non-zero and retain definite signs for a <C x<(b,
then, proceeding from the injtial approximation x,(x,€ [a, b]) for
which f(x,) f"(x,) > 0, we obtain all successive approximations of
the rool & by the formulas:

o)
T TR

To estimate the absolute error in the nth approximation we can
apply the general formula

f (x2) f ()

Ty o T T T

X=X

|/ (x) |
l§~xn|<T,

where
m,= min | (¥)].
ag<x<b

Under the above conditions the method of chords and the method
of tangents approximate the sought-for root from different sides.
Therefore, it is usual practice to take advantage of their combination,
i.e. to apply both methods simultaneously. In this case one can obtain
the most precise approximation of a root more rapidly and the cal-
culations can be checked. Generally speaking, the calculation of the
approximations x,, x,, ..., X, should be continued until the decimal
digits to be retained in the answer cease to change (in accordance
with the predetermined degree of accuracy!). For intermediate trans-
formations we have to take one or two spare digits.

3. Iteration Method. The equation f(x)=0 is first reduced to the
form x=¢ (x) where | ¢’ (x)|<{q < 1 (g=const) for a<{x<b. Star-
ting from any initial value x,€ [a, b], successive approximations of
the root & are computed by the formulas x, = ¢ (x,), x,=¢ (x)),. .., x,=
=@ (X,_,). The absolute error in the nth approximation can be
estimated by the following formulas:

lg_“WISZTéilxwﬂ'_an

if the approximations x,_, and x, lie on the same side of the root,
and

|§——an :; —‘l:'lxn—l _‘xnl»
14=¢q

if the approximations x,_, and x, lie on different sides of the root.
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3.12.1. Locate the roots of the equation
f(x) =x"—6x+2==0.

Solution. Compile a table of signs of f(x) at some chosen points

x f () \ x f )

Cw _ _

—3 — 3 +

—1 + + o +
0 +

From this table we draw the conclusion that the equation has
three real roots lying in the intervals (—3, —1), (0, 1) and (I, 3).

3.12.2. Determine the number of real roots of the equation
f(x)=x+e*=0.

Solution. Since [* (x) = 14€* > 0; f (— 00) = — 00; f (4- 00) =+ o0,
the given equation has only one real root.

3.12.3. An approximate value of the root of the equation f(x) =
=x'—x—1=0 is x=1.22. Estimate the absolute error in this
root.

Solution. We have f(¥)=2.21563—1.22—1=—0.0047. Since at
x=1.23

f(x)=2.2888—1.23—1=0.0588,

the root & lies in the interval (1.22, 1.23). The derivative [’ (x) =
= 4x*—1 increases monotonically, therefore its least value in the
given interval is

m =4x1223—1=4x1816—1=6.264,
wherefrom we get an estimate of the error

Ft|< If(x)l 0600“7~oooo75<0001.

3.12.4. Solve graphlcally the equation
xlogx—1=0.

Solution. Let us rewrite the equation in the form

]oo‘x:-l_.
S X
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Here 1, (x) =logx, ¥, (x) =%. There are tables for the values of
these functions, and this simplifies the construction of their graphs.
Constructing the graphs y=logx and y=—l— (see Fig. 57), we find

P the approximate value of the only
root £ ~2.5.

3.12.5. Find the real root of the
equation

fX)=x*—2x*4+3x—5=0

with an accuracy up to 107%
(a) by applying the method of

0 chords,
(b) by applying the method of
tangents.
Fig. 57 Solution. Let us first make sure

that the given equation has only
one real root. This follows from the fact that the derivative

[/ (x) =3x2—4x+3>0.

Then, from f(l)=—3<0, f(2)=1>0 it follows that the given
polynomial has a single positive root, which lies in the interval (1, 2).
(a) Using the method of chords, we obtain the first approximation:

n=1-221=175
Since
f(1.75)= — 0.5156 < 0,

and f(2)=1>0, then 1.75 <E < 2.
The second approximation:

X, = 1.754- 32122 . 0.95 = 1.75 4 0.0850 = 1.8350.

Since f(1.835) = —0.05059 < 0, then 1.835 <& < 2.

The sequence of the approximations converges very slowly. Let
us try to narrow down the interval, taking into account that the
value of the function f(x) at the point x,=1.835 is considerably
less in absolute value than f(2). We have

f(1.9)=0.339 > 0.
Hence, 1.835 <& < 1.9.



§ 3.12. Algebr. and Transcendent. Equations 187

Applying the method of chords to the interval (1.835, 1.9), we
will get a new approximation:

—0.05059

Further calculations by the method of chords yield
x,= 1.8437, x,=1.8438,

and since f(1.8437) < 0, and f(1.8438) >0, then &= 1.8438 with
the required accuracy of 10-4.

(b) For the method of tangents we choose x,=2 as the initial
approximation, since f(2)=1>0 and f"(x)=6x—4 > 0 in the in-
terval (1, 2). The first derivative f’(x)=3x*—4x -3 also retains its
sign in the interval (1, 2), therefore the method of tangents is ap-
plicable.

The first approximation:

x,=2—1/7=1.85T.

The second approximation:

f(1.857) 0.0779

X, = 1'857—W= 1.857 — 5 o972 = 1.8439.
The third approximation:
_ F(1.8439)
Xy =1.8439 — 0 8430) = 1.8438,

already gives the required accuracy. Here the sequence of the ap-
proximations converges much more rapidly than in the method of
chords, and in the third approximation we could obtain an accuracy
up to 10-8.

3.12.6. Find the least positive root of the equation tan x = x with
an accuracy up to 0.0001 applying Newton’s method.

3.12.7. Find the real root of the equation 2—x—Ilogx=0 by
combining the method of chords with the method of tangents.
Solution. Rewrite the left member of the equation in the follo-
wing way:
f(¥)=(2—x)+(—logx),

whence it is seen that the function f(x) is a sum of two monoto-
nically decreasing functions, and therefore it decreases itself. Con-
sequently, the given equation has a single root .

Direct verification shows that this root lies in the interval (1, 2).
This interval can be narrowed still further:

1.6 <§ < 1.8,
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since
f(1.6)=0.1959 > 0; [(1.8)=—0.0553 < 0.
Then
/ 1 "
f(x)=——1—7loge; f (x)=%loge
and

f'(x) < 0; f"(x) >0 over the whole interval [1.6; 1 8].

Applying to this interval both the method of chords and the
method of tangents with the initial point x,= 1.6 we obtain the
first approximations:

. (1.8—1.6) f (1.6) -
x,_l.G—W_l .64-0.1559 = 1.7559;

. [(1.6) _ _
Xy =1.6 — {5 = 1.6 0.1540 = 1.7540.

Applying the same methods to the interval [1.7540, 1.7559], we
get the second approximations:

(1.7540 — 1.7559) f (1.7559)

%= 17559 LI TN T 02999 75558,
. f(1.7540)

Since x,—x,=0.00001, the root & is computed with an accuracy
up to 0.00001.

3.12.8. Using the combined method find all roots of the equation
f(x) = x*—5x+4 1 =0 accurate to three decimal places.

3.12.9. Applying the iteration method find the real roots of the
equation x—sinx=0.25 accurate to three decimal places.
Solution. Represent the given equation in the form x—0.25 = sin x.
Using the graphical method, we find that the equation has one
real root &, which is approximately equal
14 “f’ﬁb to x,=1.2 (see Fig. 58).
Since

sin 1.1=0.8912 > 1.1—0.25,
sin 1.3=0.9636 < 1.3—0.25,

the root § lies in the interval (1.1, 1 3).
z Let us rewrite the equation in the
.2 form

-
T

0 !
-0.25 1
Fig. 58 x=¢ (x)=sin x4+ 0.25.

Since the derivative ¢’ (x)=cosx in the interval (1.1, 1.3) does
not exceed cos 1.1 < 0.46 < 1 in absolute value, the iteration method
is applicable. Let us write successive approximations

x,=sinx,_,+025 (n=1, 2, ...),
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taking x,= 1.2 for the initial approximation:

x,=sinl.2  4+0.25=0.932 40.25=1.182;
X,=sin1.182 +0.256=0.925 4 0.25=1.175;
x,=sin1.175 +0.25=0.923 4 0.25=1.173;
x,=sin1.173 +0.256=0.92194-0.25=1.1719;
x,=sin1.171940.25 = 0.921540.25 = 1.1715;
x,=sin1.17154-0.25=0.9211 +0.25 = 1.1711.

Since ¢=0.46 and hence Lq< 1, we have E=1.171 within the

v —

required accuracy.

3.12.10. Applying the iteration method, find the greatest positive
root of the equation

x*+x=1000

accurate to four decimal places.

Solution. Rough estimation gives us the approximate value of the
root x,=10.

We can rewrite the given equation in the lorm

x= 1000 — x3,
or in the form
1000 1
=T T %

or in the form
x=3/1000—x and so on.

The most advantageous of the indicated methods is the preceding
one, since taking [9, 10] for the main interval and putting

¢ (x) = 3/ 1000 —x,

we find that the derivative
—1

(Pl (X) = —a
33/ (1000 — x2
does not exceed 1/300 in absolute value:

1 1
! <L X 75=4¢.
l(P (X)l\ 3 3 9902 300 q
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Compute successive approximations of x, with one spare digit by
the formula

Xpir=1/1000—x, (n=0, 1, 2, ...),
x,=10,
x, = 3/ 1000 — 10 = 9.96655,
x,= 3/ 1000— 9.96655 — 9.96666,
x; = 3/ 1000 — 9.96666 = 9.96667.
We may put §=9.9667 with an accuracy of 1074
Note. Here, the relatively rapid convergence of the process of ite-

ration is due to the smallness of the quantity ¢q. In general, the
smaller the g, the faster the process of iteration converges.

3.12.11. Applying the method of chords, find the positive root of
the egquation

fX)=x*+1.1x*4+0.9x—1.4=0
with an accuracy of 0.0005.

3.12.12. Using the method of chords, find approximate values of
the real roots of the following equations with an accuracy up to 0.01:

(a) (x—1)>*—2sinx=0; (b) e-—2(1—x)*=0.

3.12.13. Applying Newton’s method, find with an accuracy up

to 0.01 the positive roots of the following equations:
(a) x*+50x—60=0; (b) x*4+x—32=0.

3.12.14. Using the combined method find the values of the root
of the equation
x—x—1=0

on the interval [1, 2] with an accuracy up to 0.005.

3.12.15. Applying the iteration method, find all roots of the equa-
tion 4x—5Inx =5 accurate to four decimal places.
§ 3.13. Additional Problems

3.13.1. Does the function
x if x <1
FO=\1 it x>1

satisfy the conditions of the Lagrange theorem on the interval [0, 2]?

3.13.2. Prove that for the function y=oax*+ fx+ v the number §
in the Lagrange formula, used on an arbitrary interval [a, 0], is the
arithmetic mean of the numbers a and b: §=(a—+0)/2.
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3.13.3. Prove that if the equation
QX" +ax" 1+ ... +a,_x=0
has a positive root x,, then the equation
nax" '+ n—1)ax""*+...+a,_ =0
has a positive root less than x,.

3.13.4. Prove that the equation x*—4x—1=0 has two diflerent
real roots.

3.13.5. Prove that the function f(x)=x"-+px+g cannot have
more than two real roots for n even and more than three for n odd.

3.13.6. Prove that all roots of the derivative of the given poly-
nomial f(x)=(x+1)(x—1)(x—2) (x—3) are real.

3.13.7. Find a mistake in the followinz reasoning.
The function
[ ¥*sin(l/x) forx =0,

F )= 1 0 forx=0

is differentiable for any x. By Lagrange’s theorem
2gin L — inL __cos L
x*sin— —x(2§sm £ cos §>,

whence
cos —é—:?‘_& sin %—x sin% 0 <E <.
As x tends to zero & will also tend to zero. Passing to the limit,

we obtain limcos (1/§) =0, whereas it is known that limcos(1/x) is
E - 0

X g x->0
non-existent.

3.13.8. Find a mistake in the following deduction of Cauchy’s
formula. Let the functions f(x) and ¢ (x) satisfy all the conditions
of the Cauchy theorem on the interval [a, b]. Then each of them
will satisfy the conditions of Lagrange’s theorem as well. Consequ-
ently, for each function we can write the Lagrange formula:

f(b)—f(a)=f, (g)(b_a)y a<§<bv
Pb)—9@=9¢"E) (b—a), a<EL0b.
Dividing the first expression by the second, we obtain:
fO—f@ _ " ®b=a '@
eO)—g(@ ¢ Eb—a ¢ @
3.13.9. Prove the following inequalities:

(a) ”—;;b<ln%<“b;b if 0<b<a,
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(b) py?t (x—y) <P —yP < pxP' (x—y) if 0 <y <xand p>1.
3.13.10. Prove that all roots of the Chebyshev-Laguerre polynomial

dan .
dxn (Xne J‘)

L,(x)=e"75
are posifive.

3.13.11. Prove that if the function f(x) satisfies the following
conditions:

(1) it is defined and has a continuous derivative of the (n—1)th
order [~V (x) on the interval [x,, x,];

(2) it has a derivative of the nth order f"™ (x) in the interval
(Xos Xn);
(3 f f(xl '_"‘:f(xn) (x0<xl<"‘<xn)v
then msxde the interval [x,, x,] there is at least one point § such
that f (E) =0.

3.13.12. The limit of the ratio of the functions

. e=2x (cosx—|—2smx) 14+2tanx
lim lim e~ ———=
%> o €% (cos x-+sinx) Yo ® I +tan x
. . . . l42tanx . . .
is non-existent, since the expression Titanz S discontinuous at

the points x,=nn+mn/2 (n=0, 1, ...), but at the same time the
limit of the ratio of the derivatives does exist:

[e=2¥ (cos x+2 sinx))’

lim [e=* (cos x4 sin x)]’

X - @®

. —5e-%xsinx 5
= lim Toe—%sinx ? lim e-*=0.
x-w € sinx X > o

Explain this seeming contradiction.

3.13.13. Prove that the number 8 in the remainder of the Taylor
formula of the first order

7 hz "
flarh)=F(a)+hf" (@) -+ 5 [ (a-+6h)
tends to 1/3 as h— 0 if f’’ (x) is continuous at x =a and ['’" (a)=40.
3.13.14. Prove that the number e is an irrational number.

3.13.15. Prove that for 0 < x<Cm/2 the function f(x)=(sinx)/x
decreases. From this obtain the inequality 2x/m <sinx <x for
0 < x <Zm/2 and give its geometric meaning.

3.13.16. Show that the function f(x)=x-4cosx—a increases;
whence deduce that the equation x-cosx=a has no positive roots
for a <1 and has one positive root for a > 1.

3.13.17. Show that the equation xe*=2 has only one positive
root found in the interval (0, I).
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3.13.18. Prove that the function

Lot ean L
f(x)=<( 3 X - x%sin = for xs£0,
(o for x=0
is not monotonic in any interval containing the origin. Sketch the
graph f (x).
3.13.19. Prove the theorem if: (1) f(x) and ¢ (x) are continuous
in the interval [a b] and differentiable inside it; (2) f(a)=¢ (a);
and (3) [ (1) > ¢’ () (a < x<b), then f(x)>q(x) (a < x<b).

x—l—

3.13.20. Show that the function f(x)= has neither maxima,

nor minima at ad—bc == 0.
3.13.21. In the trinomial x* 4+ px—- g choose the coefficients p and ¢

so that the trinomial has a minimum at x=3 and that the mini-
mum equals 5.

3.13.22. Test the function f(x)=(x—x,)" ¢ (x) for extremum at
the point x==x, where n is a natural number; the function ¢ (x) is
continuous at x =x, and ¢ (x,) #%=0.

3.13.23. Given a continuous function

Fx) = (2—sin—i—>|x| at x=~0,
0 at x=0.

Show that f(x) has a minimum at the point x=0, but is not
monotonic either on the left or on the right of x=0.

3.13.24. Find the greatest and the least values of the following
functions on the indicated intervals:

(a) y=|x| for —1<<x<1,

(b)y E(x) for —2<<x<< 1.

3.13.25. Do the following functions have the greatest and the
least values on the indicated intervals?

(a) f(x)=cosx for —m2<{x<m,

(b) f(x) =arcsinx for —1 <x<1.

3.13.26. Prove that between two maxima (minitna) of a continuous
function there is a minimum (maximum) of this function.

3.13.27. Prove that the function

x?sin? (1/x) for x=£0,
F o) *{ for x=0
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has a minimum at the point x,=0 (not a strict minimum).

3.13.28. Prove that if at the point of a minimum there exists a
right-side derivative, then it is non-negative, and if there exists a
left-side derivative, then it is non-positive.

3.13.29. Show that the function
g— 1/x* (x > 0),
3x2 (x<0)

has a minimum at the point x=:0, though its first derivative does
not change sign when passing through this point.

3.13.30. Let x, be the abscissa of the point of i flection on the
curve y={(x). Will the point x, be a point of extremum for the
function y={f" (x)?

3.13.31. Sketch the graph of the function y=f(x) in the neigh-
bourhood of the point x=—1 if

f(—=D)=2, " (=)=—1, f"(—=1)=0, [""(x) > 0.
3.13.32. For what choice of the parameter # does the ‘“curve of
probabilities”

y-_:_l?h? e—h’x’ (h > 0)
have points of inflection x =+ o?

3.13.33. Show that any twice continuously differentiable function
has at least one abscissa of the point of inflection on the graph of
the function between two points of extremum.

3.13.34. Taking the function y=x*-4-8x® 4 18x* 8 as an example,
ascertain that there may be no points of extremum between the
abscissas of the points of inflection on the graph of a function.

3.13.35. Prove that any polynomial with positive coefficients,
which is an even function, is concave everywhere and has only one
point of minimum.

3.13.36. Prove that any polynomial of an odd degree n >3 has
at least one point of inflection.

3.13.37. Proceeding directly from the definition, ascertain that
the straight line y=2x41 is an asymptote of the curve y=
_ 204841
=0



Chapter 4

INDEFINITE INTEGRALS.
BASIC METHODS OF INTEGRATION

§ 4.1. Direct Integration and the Method of Expansion
Direct integration consists in using the following table of integrals:
(I)Su"du— l+C (n=—1);
2) S—di=]n|u[+C'

(3) Sa”du——a"+C S
4) Scosudu:smu—l—C; Ssmudu_—cosu+C
() Scoshudu:sinhu—]—C; S

e*du=e"+C;

sinhudu = cosh u 4 C;
du

6) | iy =tanu+G; M cotuC
(7)S‘u +a_=—arctan —|—C——Larccot —+Ci (a>0);
(8) V2 —arcsm——l—C——arccos——l—C (@ > 0);
a®—u?
©) YVu-i - ln(u+l/u2 a*) +C;
u—a
(10) | z2s =5 In| ] +C.

In all these formulas the variable u is either an independent
variable or a differentiable function of some variable. If

{F(wdu=Fw-C,
then
(Flav+b)dx =1 F@xt6)+C.

The method of expansion consists in expanding the integrand into
a linear combination of simpler functions and using the linearity
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property of the integral:

fZah(x =2 1o de <§I|a,~l>0\)-

x4 5x—1

4.1.1. Find the integral /= ——dx.
Vx
Solution.
]___5‘): +V5i dx = f(x’/2+5x'/= —x~':) dx =

—)x’/zdx—|—5Sx‘/zdx—gx-‘/’dx=
2o 4t —2x'/=—|—C

Note. There is no need to introduce an arbitrary constant after
calculating each integral (as is done in the above example). By com-
bining all arbitrary constants we get a single arbitrary constant,
denoted by letter C, which is added to the final answer.

4.1.2. [ = 56x3+x2—2x+ldx

1

4.1.3. 1= Ssmzxcosz
Solution. Transform the integrand in the following way:

1 __sin?x--cos?x | + 1
sin2xcos?x  sin?xcos?x  cos?x ' sin®2x’

Hence,
I=Si—|— .d).c =tan x—cotx+4C.

cos2 x sin% x
4.14. | = S tan? x dx.
Solution. Since tan?x =sec?x—1, then

/ =Stan2xdx= S dx —Sldx=tanx—x+C.

cos2 x

4.1.5. 1= (x*+5)dx.

Solution. Expanding the integrand by the binomial formula,
we find
75x3

1=S(x«+15x4+75x2+125)dx_—+‘5;"+ > 41255 4-C.
4.1.6. | = S (3% +5)'7 dx.
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Solution. Here it is not expedient to raise the binomial to the
17th power, since u=3x-+5 is a linear function.
Proceeding from the tabular integral

Su17du———|—C
we get
_ 1 (Bx+5)18
= 3 18 +C.
dx
4.].7- [— —Vﬁ:ﬁ.

4.1.8. [ = cos (aux+ 1) dx.
Solution. Proceeding from the tabular integral (4)
Scosudu=sinu+C,
we obtain
I/ =-Jlt—sin (mx+ 1)+ C.

4.1.9. I= Scos 4xcos 7Txdx.

Solution. When calculating such integrals it is advisable to use
the trigonometric product formulas. Here

cos4xcosTx = LQ (cos 3x 4 cos 11x)

and therefore
== ScosBxdx + = 3 Scos llxdx———sm 3x+ sm 11x+4 C.

Note. When solving such problems it is expedient to use the
following trigonometric identities:

sinmx cos nx = - [sin (m—n) x + sin (m -+ n) xJ;

sin mx sin nx =+ [cos (m—n) x—cos (m + n) x|;

COS mx COSnx =

[cos (m—n) x4 cos (m+-n) x].

4.1.10. [ = S COS x cos 2x cos bx dx.
Solution. We have

(cos x cos 2x) cos 5x = % (cos x - cos 3x) cos bx =

= —41— [cos 4x 4 cos 6x] 4 % (cos 2x + cos 8x).
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1=

Thus,

71‘- [Scos?xdx—}—Scos4xdx+$coszdx—]—ScosSxdx] =
1. 1 . 1. 1.
=§sm2x—|—Esm4x+ﬁsm6x—|—§sm8x+C.
4.1.11. I = sin®3xdx.

Solution. Since sin?3x = l_°2°s 8% then
1.
I——S(l —cosbx)dx =5x — 13 sinbx+C.
4.1.12. | = { cosh* (8x+5) dx.
Solution. Since cosh? u=%, then

i =%§ [1+ cosh (16x + 10)] dx = + x+ 3 sinh (16x4- 10) + C.
4.113. 1=

m-i—_S
Solution. [= S\x2+4x+5 (x+g);2+] =arctan(x+2)+C.
4.1.14. [ = W“ﬁ
4.1.15. | = sz+x+1
4.1.16. 1=§—W.

dx 1 . 3x
V4—9xz SVZTQ—-_:& —§arcsm—2-—|—C.

4.1.17. 1=5V%‘Tﬁ?‘

Solution. [ = 5

Solution. I = st_xz_“ §V9—(x+2)2 arcsm———l-C
4.'.]8. 1=§W_T4-—_T-
dx
4.].19. 1= m .
Solution.
1 2V 2+ %42
I= f e —(x+2>2_4;f’§ 1n,2lf§—(x+2)l+c

4.1.20. 1= o2
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4.1.21. Evaluate the following integrals:
? d —1
(a)Sm; (b) XJ:/— dx;
© 3—2cot?2x 24 3x2

cos? x x% (14-x%)
4.1.22. Integrate:
Vi34 Vifae | cos 2x .
(@) S Vi—a dx; (b) S cos x— sin xdx’

9x+1__5x—-1
S 10%

dx;  (d) dx.

= ——dx; (d) S(sin 5x— sin ba) dx.

§ 4.2. Integration by Substitution

The method of substitution (or change of variable) consists in sub-
stituting @ (¢) for x where ¢ (¢f) is a continuously differentiable
function. On substituting we have:

§Fode={flo®] o () at,
and after integration we return to the old variable by inverse sub-
stitution ¢ = ¢~ (x).
The indicated formula is also used in the reverse direction:

(Flo ] ¢ () dt = [ (x)dx, where x=g (#).

4.2.1. 1= xVi—5dx.
Solution. Make the substitution

V x—5=t.

—b5=1, x=1245, dx=2tdt.
Substituting into the integral we get

Whence

I=S(t2+5)t'2t dt=25(14_l_5t2)dt +10t3+C

Now return to the initial variable x:

—5)%/2 5\
1=2(x 55) +10(x 5)

3 +C.
422. 1= 2.
Solution. Let us make the substitution 14-e*=¢. Whence

ef=t—1, x=In(t—1), dx=dtj(t—1).




200 Ch. IV. Indefinite Integrals

Substituting into the integral we get

1+ex St(t—l)
But

therefore
dt dt
1=Sm—-s7=ln|t—ll—ln|t|+C.
Coming back to the variable x, we obtain

I= 1+ x—l—C x—In(l14-e*)4C.

Note. This integral can be calculated in a simpler way by mul-
tiplying both the numerator and denominator by e~*:

S%dx Sefxe+x]dx——1n(e 4 )4+ C=

=—1In ;— =x—In(e*+41)+C.
123 1= § V();xt35)3
4.2.4. 1= —hde :
S(x4—|-3x2+ 1) arc tan xz_j; !
Solution. Transform the integrand
- (1— 1/x?) dx

[(x+ 1/x)24+1] arc tan (x+ 1/x) *
Make the substitution x—}—i:t; differentiating, we get

(1——> dx =dt.
Whence

]ZS(m—l)arc tan?”
Make one more substitution: arctanf=u. Then

dt
1

=du
and
I= S—=ln|u|+C
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Returning first to ¢, and then to x, we have

I—ln]arctant|+C—ln|arctan(x—i— )I-I—C
4.2.5. I:S Va— 4
x4

Solution. Make the substitution:

1 dt
X—t—, dx=—7.

Hence,

——S Va—ie dt_-jt V@t —1dt.

ine

Now make one more substitution: }/ a?#*—1=2. Then 2a* df =
= 2zdz and

1
I=—?S22dz=——3aaz +C.

Returning to ¢ and then to x, we obtain

a2 — x2)°/2
[=— (__3.&.2)‘3_ +C.
dx
4.2.6. I= S a?sin?2 x4 b2 cos2x”
Solution.
| — dx — 1 1 . dx
Saz sin? x4 b2 cos2x bZSF tan? x 4 1 cos?x
Make the substitution % tanx=t¢; dt= Z ——. Then
cos?x °
I:EIE nl—%=a—lbarctant—|-C.

Returning to x, we obtain
1 a
I=%arc tan (7 tanx)—l—C.

4.2.7. I:S /14 3sin x cos x dx.
Solution. Make the substitution 1 4+3sinx =¢, 3cosxdx=df. Then

s g e  Cay g L3 (143sinx)"s
I=5 {Via=g(rna =g Fenpo=0E3500 "4

4.2.8. I = Si"xdx.
4 .Svl/cosx'
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4.2.9. /= e

2.9.1 X(arccosx)5 Vi—x

Solution. Make the substitution: arc cosx =1; ——%— dt. Then
—

1
1=—S =—St bdt__t 4+C_4arccos4x+c
x2+1
id
":/x3-{—3x—|—l X

sin 2x
4-2.]]- 1: md

Solution. Make the substitution:
1 +sin?x=¢; 2sinxcosxdx=sin2xdx -=dt.

4.2.10. 1=S

Then
[ = i—t=lnt+C=ln(l—{—sin“x)—]—C.
422, 1= 0% dx
Solution. Substitute
34+xlnx=t, (1+1Inx)dx=dt
and get
1:S#=1n|t|+0=1n|3+xlnx|+c.

4.2.13. Evaluate the following integrals:
A ES

xInx’

d n -1
(C)§ -2 ,() g;f?ﬁdx;

sin Vx
(e)S dx; 5<lnx—|—]nx>x
4.2.14. Fmd the following integrals:

23 /T2 o Inxdx
(@ Sx l/l xdx; (b) Y V-l—}—ln,x
(c) jcos-"xlfﬁdx

§ 4.3. Integration by Parts
The formula
gudv=uv— Svdu

is known as the formula for integration by parts, where u and v
are differentiable functions of x.
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To use this formula the integrand should be reduced to the pro-
duct of two factors: one function and the differential of another
function. If the integrand is the product of a logarithmic or an
inverse trigonometric function and a polynomial, then u is usually
taken to be either the logarithmie or the inverse trigonometric func-
tion. But if the integrand is the product of a trigonometric or an
exponential function and an algebraic one, then u usually denotes
the algebraic function.

4.3.1. I = S arc tan x.dx.
Solution. Let us put here

u=arc tanx, dv=dx,
whence
dx | .
du= et v=x;
I/ =Sarc tan xdx = x arc tan x — % =xarc tan x—% In(1-4+x?)+4C.
4.3.2. |= g arc sin x dx.
43.3. |I= chosxdx.
Solution. Let us put
U=x; dv=cos xdx,
whence
du=dx; v=sinx,

[ = S xcosxdx=xsinx—g sinxdx = xsinx+cosx+C.

We will show now what would result from an unsuitable choice
of the multipliers « and dv.

In the integral chosxdx let us put

U==COSX; dv=xdx,
whence
du == —sin x dx; v=%x2.
In this case

/;:—;xzcosx-1—%Sx‘zsinxdx.

As is obvious, the integral has become tnore complicated.
4.34. [={ x*Inxdx.
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Solution. Let us put

u=Inx; dv=x3dx,
whence

du==—; v=

L
7

x*dx = }1 x“lnx—-——x‘—l—C

ey | —

I = ‘lnx———Sx4————x4lnx

4.3.5. I=S (x2—2x -+ 5) e~ * dx.
Solution. Let us put
u=x*—2x-+95;, dv=e *dx,
whence
du=(2x—2)dx; v=—e%
=S (x*—2x+5)e *dx=—e *(x*—2x+5)+2 S (x—1)e~*dx.

We again integrate the last integral by parts. Put
x—1=u, dv=e"*dx,
whence
du=dx; v=—e %,
=2 S (x—1De *dex=—2e"%(x—1)42 S e~ *dx=—2xe~*1C.
Finally we get
=—e *(x*—2x+5)—2xe *+C=—e"*(x24-5)+C.

Note. As a result of calculation of integrals of the form S P (x) e®* dx

we obtain a function of the form Q (x)e**, where Q(x) is a poly-
nomial of the same degree as the polynomial P (x).

This circumstance allows us to calculate the integrals of the in-
dicated type using the method of indefinite coefficients, the essence
of which is explained by the following example.

4.3.6. Applying the method of indefinite coefficients, evaluate
= { @w—17)e*dx.
Solution. | (3x*—17) e dx= (Ax*+ Bx*+ Dx + E) e**+C.
Difierentiating the right and the left sides, we obtain
(3x*—17)e** =2 (Ax®+ Bx* 4+ Dx + E) e** + ¢** (3Ax* 4 2Bx + D).
Cancelling e**, we have
3x2—17=2Ax*+ (2B+34) x*+ (2D + 2B) x4 (2E - D).
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Equating the coefficients at the equal powers of x in the left and
right sides of this identity, we get

3=24; 0=2B+34;
0—2D+2B; —17=2E-D.

Solving the system, we obtain

Hence,
(Eo—1nesdi=(Fr—Fr+gs—F)etC
4.3.7. Integrate:
I=S (x®+ 1) cos x dx.
Solution. Let us put

u=x*+4+1; dv=cosxdx,
whence

du=3x*dx, v=sinx.
I=x*+1)sinx—3 S x?sinx dx=(x*+ 1) sin x —3/,,
where 11=S x?sin xdx.
Integrating by parts again, we get
l,=—x*cosx+21,,
where /,= chos xdx.
Integrating by parts again, we obtain
I,=xsinx+4cosx+C.
Finally, we have:
1=S (x*+1)cos x dx=(x*+1)sinx+3x2cosx—6x sin x—6 cos x4 C=
= (x®*—6x+ 1)sinx 4 (3x2—6) cos x+ C.

Note. The method of indefinite coefficients may also be applied
to integrals of the form

S P (x) sin ax dx, S P (x) cosaxdx.
4.3.8. | = S (x? 4 3x 4+ 5) cos 2x dx.
Solution. Let us put
S (x*+3x+5) cos2xdx =
= (Apx*+ Ax+ A,) cos 2x+ (Byx* + Byx + B,) sin 2x+ C.
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Differentiate both sides of the identity:

(x*+3x+5)cos2x=—2 (Ax*+ A, x+ A,) sin 2x +
+ (24x+ A,) cos 2x + 2 (Byx? + B,x -+ B,) cos 2x+4- (2Byx+B,)sin2x=
= [2Byx*+ (2B, + 24,) x+ (A, +2B,)] cos 2x +
+ [—24%+ (2By—2A,) x + (B,—2A4,)] sin 2x.

Equating the coefficients at equal powers of x in the multipliers
cos2x and sin2x, we get a system of equations:

2B,=1; 2(B,+4,)=3; A, +2B,=5;
—24,=0; 2(B,—A4,)=0; B,—2A,=0.

Solving the system, we find

Ay=0; By=+; A,=4: By=>; A,=3; B,=

2

|

Thus,
S(x2+3x+5)c052xdx=(—;—+ 3)c052x+< x? i— x+ )sin2x+C.
43.9. I= S (3x2 4- 6x - 5) arc tan x dx.

Solution. Let us put

u = arc tan x; dv = (3x®+ 6x 4 5) dx,
whence
dx

du——‘m,

v=x>-+3x2 4 5x.
Hence,

I = (x®+ 3x% 4 5x) arc tan x—S ﬂ—"}%}"—s—xdx.

Single out the integral part under the last integral by dividing
the numerator by the denominator:

3+ 3x25. 4x—
I, =S-"—iﬁ"—x-5ti‘d —S(v-{—S)dv{—S z+1

=g +avref F s =

Substituting the value of /,, we finally get
I = (x®*+3x2+5x+ 3)arctan x—x2/2—3x—2In (x*+ 1) 4 C.
4.3.10. Find the integral
I= Se“ cos4xdx.

—|— 3x+2In(x*+1)—3arctanxy--C.

Solution. Let us put
e =y; cosdxdx=dv,
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whence
1 .
S dx =du;, v= 7 sin 4x.
Hence,

1 . L.
| —= Te“ sin 4x —%Se“ sindx dx.

Integrating by parts again, we obtain

r n
[1:j e** sin 4x dx = — —i—e”xcos4x—|—%5 es*cos4x dx.
Thus,
I=—le-""sin4x—3 ———l—ei"‘cos4x—|—E e’* cos 4xdx
4 4 4 4 ’
i. e.
L 5 25
I——L}-e’f(sm4x—|—7cos4x)—-ﬁl.
Whence

[ = %e"" (sin 4x + % cos4x) +C.
4.3.11. 1= cos(In x) dx.

Solution. Let us put

u=cos (Inx); dv=dx,
whence

du =—sin(1nx)d?x; v =x.
Hence,
= Scos (Inx)dx =xcos(In x) + S sin (In x) dx.

Integrate by parts once again

u =sin (In x); dv =dx,
whence
du = cos(In x)‘i—x; v =x.
Hence,
1, = S sin (Inx)dx = x sin (In x) — S cos (In x) dx.
Thus
[ = Scos(lnx)dxzxcos(lnx)—l—x sin(lnx)—1.
Hence

I = % [cos (In x) -+ sin (Inx)] + C.
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4.3.02. 1={xmn (14 1) ax.
Solution. Let us transform the integrand

( + — ) n—-ln(x-l— 1)—Inx.
Hence
1=len(x—}—l)dx—lenxdx:I,—lz.

Let us integrate I, and /, by parts. Put
u=In(x-+1); dv=xdx,
whence

d 1

du:TT;i}; U='§'(x2’—l)'
Hence

h=feinees e =307 D inGh 1>——S "‘E‘i""

ln(x—l—l)——-4— -é—x—}—C.

)—-2— (x—-—l)dx:

Analogously,
12=Sx In xdx=x2—2]nx—%x2+C.

Finally we have

l—_—len (l —|-%)dx=%(x2—l)ln(x+ 1)—%21n r—l—% +C.

4.3.13. 1=§ VEFi(n(e+)—2iny

x4
Solution. First apply the substitution
1
l —I— —Jﬁ = t.

Then

2dx dx 1

dt=—=-5 or GZ=—di

Hence,

1—5 ]/1+ x2+'-£‘_——§Vt Int dt.

The obtained integral is easily evaluated by parts. Let us put

u=Int; dv=Vtdt.

dt 2 e
du=t—, U=§‘tVt.

Then
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Whence
— 5 (Vimtdt=—3 [StyTme—% (VTat] =
=—%[§tl/t lnt—-—%tl/t—]—l-c
Returning to x, we obtain
[ ()= () e
ﬁ%—”ﬂ[z 3in(1+5)]+¢.
4.3.14. 1=Ssinxln tan xdx.

4.3.15. [ = S In(VT=x+V1+x)dx.
Solution. Let us put

u=In(V1—x+V1+x); dv=dx,

whence
du= __ | (— I_—I— l__>dx=
T+« 2V1—=x 2VT1+x
L VIix—Vifx _dx 1 Vi-e-1 .
T2 YiIx+Vitx Viee 2 xVi—=x o
v=x.
Hence,
Vi=x—1
I_xln(l/l—x—{—l/l—i—x)—— Vl

=xIn()/ l—x+V1+x)—5§dx+?57J‘L—=

1 —x?

=xIn(V T—x+V l—l—x)—%x—l--;—arcsin x+C.

Note. In calculating a number of integrals we had to use the
method of integration by parts several times in succession. The
result could be obtained more rapidly and in a more concise form
by using the so-called generalized formula for integration by parts
(or the formula for multiple integration by parts):

§u o de=u() o, ()—u' (¥) 0, (0)+u" (x) 0, (1) —
A (1P (1), () — (=17 § ()0, () di,
where
v, (x)= Sv(x)dx; v, (x)= S v, (N)dx; ... v, ()= S v, -, (x)dx.

Here, of course, we assume that all derivatives and integrals appea-
ring in this formula exist.
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The use of the generalized formula for integration by parts is
especially advantageous when calculating the integral S P, (x) o (x)dx,

where P,(x) is a polynomial of degree n, and the factor ¢ (x) is
such that it can be integrated successively n+4 1 times. For example,

SP,, (x)et*dx= P, (x)eka — P, (%) 9:;-{— ..
kx
+ (=1 P (x)151_+i._|_0=
Puld 5 Pr@+ .+ G PR (0] 4-C

= gkx

4.3.16. Applying the generalized formula for integration by parts,
find the following integrals:

(a) S (x*—2x% 4 3x—1) cos 2x dx,
(b) § (@x*+3x2—8x+ 1)V 2+ 6dx.
Solution.
(a) S(x“ 2x2 4+ 3x—1) cos 2x dx = (x* —2x* }- 3x -—l)sm%c
A\

_(3x2_4x+3)( cos?x) (6x—4)< sm2x)__ cols;;2x+c_

sin 2x (2x3_4x2+3x)+coz 2x
(b) §(2x3+3x2_8x+1)1/2x+6dx=

/
— (v 30—k ) EEO (g gy g @EOM

(6x*—8x +3)+C;

(2x--6)7/2 (2x - 6)%/2
+ (1204 6) g7 ——125575-4C

_ Vs?;j;ﬁ (2x - 6) (70x* — 45.x* — 396 4-897) - C

Evaluate the following integrals:
4.3.17. {In(x+V T ) dx.
4.3.18. § 3/ (tnx) dx.

4.3.19 arc sin xdx
a0, [resnser,

4.3.20. S‘xcosxdx

sindx °

4.3.21. g3x cos x dx.
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4.3.22. \ (x®—2x% - 5)e3* dx.

4.3.23. \ (1 + x?)?%cos x dx.

4.3.25.

§
)

4.3.24. g (x? ++ 2x — 1) sin 3x dx.
S (x®2—2x+ 3) In x dx.
)

4.3.26. \ x®arctanxdx.
4.3.27. Sx’ arccos x dx.

4.3.28. Applying the formula for multiple integration by parts,
calculate the following integrals:

(a) j‘ (3x*+x—2)sin?(3x+ 1)dx; (b) j /7x+ldx

§ 4.4. Reduction Formulas

Reduction formulas make it possible to reduce an integral depend-
ing on the index n >0, called the order of the integral, to an
integral of the same type with a smaller index.

4.4.1. Integrating by parts, derive reduction formulas for calcu-
lating the following integrals:

dx . — (sin"x ..
(a) In= (_xz'_l_—az)ﬁ’ (b) In ~-m S\COS”’X ’
() I,= S (@* —x*)"dx.
Solution. (a) We integrate by parts. Let us put

1
u= m , dv= dx,
whence
du — — 2n x dx v—x
- (xz-l—a'z)"“’ e
IHence,
x X3
L= i+ 20 g =
. X 19 (x2+ a2)—a? N
~E T +2n GE e dx = (x‘_f_a )"—l—QnI —2na*l, .,
whence
1 X 2n—1 1
I""" T onat” (x2+ a2y + o @ L.
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The obtained formula reduces the calculation of the integral /,,,
to the calculation of the integral [/, and, consequently, allows us
to calculate completely an integral wilh a natural index, since

II=SL=711-arctan%+C.

x2+a?
For instance, putting n=1, we obtain
d 1 1 1
Iﬂ:S (x2—|-xa2)2=27'x2+a2+2_a2Il:ﬁxz—l—a_z_l_ﬁar(:tan%_i_C;
putting n=2, we get
1 X 3

dx
b=\t wrar
1
m' ()62~|——02)Z+W.x2—|-a2+8 5arctan———|—C.

(b) Let us apply the method of integration by parts, putting
sin x d
cos™ x

u=sin""1x;, dv=
whence

du=(n—1)sin*"2xcosxdx; v= !

(m— 1) cos®—1x

(m=1),

Hence,
] . sint—1x n—1 (sin"-2xdx
meo=m = (m—T)cos”=1x m—1 J cos®—2x
sin?—1 x n—1
Tm—Tycos"Tx m—1 Iy, oom (m==1).

(c) Integrate by parts, putting
u=(a*—x*" dv=dx,
whence
du =—2nx (@*—x*)""1dx; v=x.
Hence
l,=x(@—x*)"4+2n S K (@—x%)""ldx =
=x(a*—x?)"+2n S x*—a*+a®) (@®—x)"1dx =
=x (a*—x?*)"—2nl,+ 2na*l, _,
Wherefrom, reducing the similar terms, we obtain
(I42n)1,=x(@—x*"+2na%l,_,
Hence,

1,= x (a2 —x?2)n 2na? I

on+1 2nt1 ' n-1
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For instance, noting that

dx . X
1_1,2=§m=arcsmg+c,

we can find successively

11/225\1’ a*—x* dx=%(a2_x2)l/2+f;[_l/2=

a2

_x 2__ .2 s X

=5 Var— 2+ 5 arcsin a—i—C,
3

13,2=S(az—x2)3/2dx:-z—(a2—x2)3/2+Ta211/2, and so on.

4.4.2. Applying integration by parts, derive the following reduc-
tion formulas:

(a) I,= S (Inx)*dx=x(Inx)*—nl,_;

u +1(]n x)”
b) L= (nxyde =22, @ —1);

(©) I,= S x"e*dx =x"e*—nl,_,;
(d) I,= Se“"sin"xdx =

erx
T atfn?

n(n—1)

sin?~1x (asin x—
( ncos x) + pER

Iy

4.4.3. Derive the reduction formula for the integration of /,=

=S .d’f, and use it for calculating the integral I,= .df .
sin™ x sin” x

4.4.4. Derive the reduction formulas for the following integrals:
(@ 1,= g tan®xdx; (b) I,= S cot” xdx;

X" dx

I — gy ———
© 1= 2=



Chapter 5

BASIC CLASSES
OF INTEGRABLE FUNCTIONS

§ 5.1. Integration of Rational Functions

If the denominator Q (x) of the proper rational fraction g—g—;can
be represented in the following way:

Q (¥) = (x—a)* (x—b) ... (@ ax+B) (R+yx+p)y...,

where the binomials and trinomials are different and, furthermore,
the trinomials have no real roots, then

P (x) _ A A Ak
Q (x) —x—la+ (:c:—za)2 +eot (x—a)k +

B B B
-I—leb—l—m—i-...-l—(x—_l—b‘)z—l-...

Mix+ N, Myx+ N M x+N
ctotartp T @ratr T T @ ey T
+ Ryx+L, Rox+Ly Rex+Ls

Pt D@t T T s T
where
A, 4, ...,B,B,, ..., M, N, Mj,, N,, ..., R,,L,,R,, L,, ...
are some real constants to be determined. They are determined by
reducing both sides of the above identity to integral form and
then equating the coefficients at equal powers of x, which gives
a system of linear equations with respect to the coefficients. (This
method is called the method of comparison of coefficients.) A system
of equations for the coefficients can also be obtained by substitu-
ting suitably chosen numerical values of x into both sides of the
identity. (This method is called the method of particular values.)
A successful combination of the indicated methods, prompted by
experience, often allows us to simplify the process of finding the
coefficients.

If the rational fraction — s improper, the integral part should

QM)
first be singled out.
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5.1.1.

15x2 —4x—81
"‘Sa—4>w+4)u—4>d”

Solution. The integrand is a proper rational fraction. Since all
roots of the denominator are real and simple, the integral will
appear in the form of the sum of three simple fractions of the form

15x2 —4x—381 A B D
(x—3) (x+4) (x—1) =x—3 + x+4 +x— 1’

where A, B, D are the coefficients to be determined. Reducing the

fractions to a common denominator and then rejecting it, we obtain
the identity

15x — 4x—81 = A (x+4) (x— 1)+ B (x—3) (x— 1) +
+D(x—3)(x+4). (*)

Comparing the coefficients at equal powers of x in both sides of
the identity, we get a system of equations for determining the
coefficients

A+B+D=15 34—4B4+D—_—4; —4A+3B—12D=—8l.

Solving the system of equations we find A=3, B=5, D=7.
Hence,

dx dx dx
1:35’5*3—'_5 Sx+4+7 x—1

=3In|x—3|+5In|x+4]|4+7Injx—1|+C=
=lIn|(x—23)* (x+4)" (x—1)"| + C.

Note. Let us use {he same example to demonstrate the applica-
tion of the method of particular values.

The identity (*) is true for any value of x. Therefore, setting
three arbitrary particular values, we obtain three equations for
determining the three undetermined coefficients. It is most conve-
nient to choose the roots of the denominator as the values of x,
since they nullify some factors. Putting x=3 in the identity (*),
we get A=3; putting x =—4, we obtain B=25; and putting x =1,
we get D=7.

: x4 dx
5-1020 I_——.S(QTI-)—(,{)‘—_—‘]).
5.13. 1= (£ 52y,

Solution. Since the power of the numerator is higher than that
of the denominator, i.e. the fraction is improper, we have to single
out the integral part. Dividing the numerator by the denominator,
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we obtain
—3x2—3x—2 x+2
B—x2—2x =x+l_x(x2——x——2)’
Hence,
x3—3x2—3x—2 (x+2)dx
I=S——-————x3 dx_S(x—l— Sx_————(x——Q)(x—l-l) .
Expand the remaining proper fraction into simple ones:
x+2 _A
eI - x Tr—2 Trrl
Hence
1+2=Ax—2)(x+ 1)+ Bx (x4 1)+ Dx (x—2).
Substituting in turn the values x, =0, x,=2, x,=—1 (the roots
of the denominator) into both sides of the equality, we obtain
: -1
A=—1, B— ; D=
And so

dx 2
I':S(x_}_l)dx‘l_ST_? x—2 SSx—{—l
2 |
=%+X+IHIXI—§1IIIJC—2I—?lnlx“l'll+c
2x2—3x—|—3d
X3 —2x2-fx

Solution. Here the integrand is a proper rational fraction, whose
denominator roots are real but some of them are multiple:

X—2x* - x =x(x—1)>2
Hence, the expansion into partial fractions has the form

2;52 3x4+3
— 2%t x _l (x—l)2+

5.14. [ =

whence we get the identity:
—3x+3=Ax—1)*+Bx+Dx(x—1)=
=(A+D)x*+(—2A—D+B)x+ A. (%)
Equating the coefficients at equal powers of x we get a system
of equations for determining the coefficients A4, B, D:
A+D=2, —2A—D+B=—3, A=3.
Whence A =3; B=2; D=—1.
Thus,

dx dx C dx 2
’=3S7+2Xa_—m—jmﬂmw"m”‘“'"—‘|+C-
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Note. The coefficients can be determined in a somewhat simpler
way if in the identity (*) we put x,=0; x,=1 (the denominator
roots), and x, equal to any arbitrary value.

At x=0 we get 3=A; at x=1 we will have 2=B; at x=2
we obtain 5=A442B+2D; 5=344+42D; whence D-=—1.

o x84 1
5.1.5. 1= (5 ax.

xdx

5*&’=SFI?

Solution. Since x*+1=(x+41)(x*—x+1) (the second factor is
not expanded into real multipliers of the first power), the expan-
sion of the given fraction will have the form

X Bx-+ D
x341 x—i—l+x2—x—|—l

Hence,
x=A(#—x+ 1)+ (Bx+ D) (x+ 1) =
—(A+B)x*+(—A+B+D)x+(A+ D).

Equating the coefficients at equal powers of x, we get

!, _ 1. _ 1
A:——g, B==; D=g
Thus,
x+1
- Sx+l+3Sx~ x+l ln|x+ll+_§_l
To calculate the integral
[lzg}yfj:l__dx

—x+1

let us take the perfect square out of the denominator:
—x+1_(x——> -{— 1

and make the substitution x—%=t. Then

1 3
i+5+1 ¢ dt 3 dt
L=\ ——F—dt=\—5+75 3=
et 24— £+

=%ln (ﬁ —|—%>+V§—arctan V__—i—C

Returning to x, we obtain

Ilzéln (*—x+1) 4+ )3 arctan 2:/:3.1—}—0.
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°ox
=) wprde=
-_-_%ln]x—;—l|+%ln(x2—x+l)+garctan 2’:/—3_1

+C.

dx
5.0.7. 1 = oty -
Solution. The denominator has two pairs of different conjugate
complex roots, therefore
1 __Ax+B | Dx+E
(1 (2+4) 7 x24+1 + x24-4°

hence
1=(Ax+B) (x**44)+(Dx+ E) (x* 4+ 1).

Here it is convenient to apply the method of particular values for
determining the coefficients, since the complex roots of the deno-
minator (x ==1i and x = + 2i) are sufficiently simple.

Putting x=1i, we obtain

3B+ 34i=1,
whence 4 =0, B=%. Putting x=2{, we obtain —3E—6Di=1,
whence D=0, E=—%. Thus,

dx __1_ dx i dx
EFDH@EE+F4 3 ) 2F1 3 Sx2+4—
=—l—arc tanx——iarctan%-l—C.

3 6
_ (x+1)adx
518 1= | e T

(x4 11212+ 8

&L&I—B TR e 4

Solution. Here we already have multiple complex roots. Expand
the fraction into partial fractions:

4434112+ 12x4-8  Ax+-B Dx+E F
(x2+2x-+3)2 (x+1) -(x2+2x+3)2+x2+2x+3+x+1'
Find the coefficients:
A=1, B=—1; D=0; E=0; F=1

Hence,

(x4 11k 412448
I‘S eyl
x—1

d
= ermgapdet [efr =mle b UL
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Calculate /, = W—_I_’C%_li—_—ﬁ—)gdx.

Since x?+2x-+3=(x+ 1)2+2, let us make the substitution
x-4-1=1¢. Then we obtain

t 1
h={ gt = (i =2 (@i — rmr 2
The integral
S (t* —|-2)2
is calculated by the reduction formula (see Problem 4. 4 1):

I * dl 1 ¢ I
[ =Tt2+2+7?5 PR Rl W e V2 arctan o= V‘ +C
Thus

1 ¢ 1 ]
Il=—2(t2+2)_2(t?+2)_2 ) arc tan 7 + C.
Returning to x, we obtain

B 1 K1 ! 41
L=—swrnys twrats oy ctany5+C

We finally obtain
= x4+4x3—|—11x2+l2x—|—8d
_S (x*+2x+3)% (x+-1)

_ x+42 1 x+1
_ln]x—|—1|——2(x2+2x+3) V3 arc tan== V_-—I-C.

Find the following integrals:
5.1.10. 5x3 4-9x2 —22x—8

— dx.
dx
5.1.11- (x+ ])(x+2)2 (x+3)3'
dx
5.1.12, S(x2_4x+4)(x2—4x—|—5)'

dx
013§ e im -

x3+43
5.1.14. S(X—erd

§ 5.2, Integration of Certain Irrational Expressions

Certain types of integrals of algebraic irrational expressions can
be reduced to iutegrals of rational functions by an appropriate change
of the variable. Such transformation of an integral is called its ra-
tionalization.



220 Ch. V. Basic Classes of Integrable Funclions

I. If the integrand is a rational function of fractional powers of

P By
an independent variable x, i.e. the function R(x, X9, ..., x‘"s) ,
then the integral can be rationalized by the substitution x=¢=,

where m is the least common multiple of the numbers q,, q,, ..., g,.
II. If the integrand is a rational function of x and fractional
ax+b

then ra-

powers of a linear fractional function of the form ,
cx +d

tionalization of the integral is eflected by the substitution

b
?;‘Id = t™ where m has the same sense as above.

5.9.1. [_SMi_‘ifdx

x(l—l—;/x)

Solution. The least common multiple of the numbers 3 and 6 is 6,
therefore we make the substitution:

x=15, dx=6tdi,
whence
(54144 ¢) 15 B4l
1=6(CEEtar —6 (e ar =

—65t3dt+6gt2+1—7 41 6arctant4C.

Returning to x, we obtain

2
I=2x% 46arctan}/ %+C.

i+ x
5.2.2. | =\ ——=——"—"—=dx.
SV351/W

(2x—3) dx
5.2.3. | = — -
(2x—3) 3 +1

Solution. The integrand is a rational function of f/?x—S,the-
refore we put 2x—3 =%, whence

! il
de=3t5dt; (2x—3)2 =1% (2x—3)3 =12

Hence,

318

I= 1

dt—BS(t"—t"—]—ﬂ—-l)dt +3Sl+,z
—.3—-——3 +3——3t+33rctant+C.
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Returning to x, we get
1 1 2 -
/=3 [7 (2x—3)F — 4 (2x—3)% + (2x—3)7 —
X 1
—(2x—3) % 4 arctan(2x—3) 5] +C.
dx

5.2.4. 1=§ <2+ ]/if:_‘>

W
5.2.5. I=S6——_W ‘/-mdx

Solution. The integrand is a rational function of x and the ex-

3
pression 2+ , therefore let us introduce the substitution
3 2—-x__t. 2—x
24+x 7 24x
whence
2—213 A -2
=TI 2—x————l_H3 ; dx———————“_,_ta)zdt
Hence
2(14-3)2¢.12¢2 _ i ﬂ_i
’=_S 1616 (14 £3)2 dt =—= )7 —4tz+c'

Returning to x, we get
3 3/ /24«x
=3V () e
jl/(x—-lﬂ +28

Solution. Since

Y E—TF T o =(— ) (x+2) )/ 2,

the integrand is a rational function of x and ]/ + ; therefore let
us introduce the substitution:

4/ x+2 . x+2

V D=1

—1

5.2.6. /=

whence

1442 3 3¢4
— 124
dx——-(———t‘_])zdt.

-~
-
—
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Hence,

I =_S(l‘—— 1) (¢4 —1) 1243 dt 4 5‘ dt +C.

3.378¢ (14 —1)2 ER N
Returning to x, we obtain

4 4/ x—1
I=§ ]/x+°+c

& -~

o2 j(l—X) Vi=z

5.2.8.
\/<x+1>2 c—1)p

5.2.9. j(x—z) ]/i‘_"f{dx

§ 5.3. Euler’s Substitutions

Integrals of the form SR(x, V ax®+ bx+c) dx are calculated with
the aid of one of the three Euler substitutions:

W)V @@ Forfo—t+xVaif a>0
@ Valdtboxte=tx+Vec if ¢>0;
@) Var+bx+c=(x—a)t if

ax* 4+ bx+c=a(x—a) (x—Bp),

i.e. if o is a real root of the trinomial ax®-bx--c.

dx
5.3.1. [—jrm

Solution. Here a=1 > 0, therefore we make the substitution

VXt 2%+ 2=1t—nx.
Squaring both sides of this equality and reducing the similar terms,

we get
2x+2Ux=12—2,
whence
_ 2.9 . t-|-2t+2
X=gu1n’ Y=sugge db
B —2  Pyaf4a
1_|_]/x2—|—QX-1"2—1+t_2(1+l)— 2(1+¢) °

Substituting into the integral, we obtain
[ (2040 @ r2tt2) o (@242 42 dt
(E+4+492(1+41¢)? (I+2 ¢ +22°
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Now let us expand the obtained proper rational fraction into par-
tial fractions:
242t +2
SN RS e R R ()

Applying the method of undetermined coefficients we find: A==

y

Hence,

oy
ER R _-St—f—l ?S(H-z)z In|t+ 1|+,+2+C

Returning to x, we get

I=In(x+1+V3+2x+2)+
dx
i+ VeE—xrl’

Solution. Since here ¢=1>0, we can apply the second Euler
substitution

2

— -C
X424+ ]/x2+2x+2+

5.3.2. I:S

Vir—x+ 1=tx—1,
whence
2t —1
12_1 »

Qt—Dx=(@—1)x% x=

dx=—-‘.l—tl;ldt R R
Substituting into I, we obtain an integral of a rational fraction:

dx [ —2242—2

Sx+m_§t(t‘l)(t+l)z
—22420—2 A

tE—=N0 @+ ¢ +t—1+(t+1)2+t+1°

dt,

By the method of undetermined coefficients we find

. B——1. p__3 E-_23
A=2% B=—5; D=—3 E=—.

Hence

l
I‘QS t—l 35(14—1)2 2St+l ;
=21n]t|—71n|t—lj—i—m—?ln]t-{—lHC,

Where t=£x&;x:i;li]_'
dx
5.3.3. I—S(l—l—x) e
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xdx
(V7x=10—x%)8
Solution. In this case a <0 and ¢ < 0 therefore neither the first,
nor the second Euler substitution is applicable. But the quadratic
trinomial 7x— 10—x? has real roots a=2, B=25, therefore we
use the third Euler substitution:

Vix—10—x2 =V (x—2) (5—x) = (x—2) L.

5.3.4. [ =

Whence
5—x=(x—2) ¢
__ 542 _ 6t dt
=Tre = —areps
_ (5422 R

Hence

54202, 2 2 5
1= — (2220 = S<t2+2>dt _3(_t_+2t>+c,
where t=w

x—2
Calculate the following integrals with the aid of one of the Euler
substitutions:

5.3.5. j:fij—i'ﬁTTT
5.3.6. le_xz_l
=
T
5.3.8. j‘i‘tv-—l'/;_Jf_x—fdx

§ 5.4. Other Methods of Integrating Irrational Expressions

The Euler substitutions often lead to rather cumbersome calcu-
lations, therefore they should be applied only when it is difficult
to find another method for calculating a given integral. For calcu-
lating many integrals of the form

S R(x,V ax®* +bx+c) dx,

simpler methods are used.
I. Integrals of the form
[— Mx-- N

=—d
Va®+bx+c o
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are reduced by the substitution x—|———-t to the form

{dt di
Y — N T —
Vat2+K+ ‘S Va?+K'
where M,, N,, K are new coefficients.
The first integral is reduced to the integral of a power function,
while the second, being a tabular one, is reduced to a logarithm

(for a > 0) or to an arc sine (for a <0, K > 0).
I1. Integrals of the form

[ Lat
) Vax2+bx+c

where P, (x) is a polynomial of degree m, are calculated by the
reduction formula:

_ Pp(x)dx dx 1)
y ax2+bx+c ]/-axl-g—bx—{—c

where P,_,(x) is a polynomial of degree m—1, and K is some
constant number.

The coefficients of the polynomial P, _,(x) and the constant
number K are determined by the method of undetermined coeffici-
ents.

I11. Integrals of the form

[ =

’

P, (x l/ax2+bx+c+KS

dx
(x—ay)™ Vax® Fox+c
are reduced to the preceding type by the substitution

X—a, =T.

IV. For trigonometric and hyperbolic substitutions see § 5.7.

5.4.1. | = _ (x+3dx
T Vi ra—3
Solution. Make the substitution 2x-4 1 =1¢, whence
1—1 1
X=T, dx=?dt
Hence,
—1 (t+5dt 1 4 4| C.
I v =TV P+ S|tV P—4|+

Returning to x, we get

— VI T & —3 > Inj2x+ 1+ V3¢ +4x—3|+C.
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5.4.2. 1=5\'5x—.—+1_ X
Vx2+2x+5

3_x—1
5438 [=\-2"2*_"__4
V x2+2x+42 *

Solution. Here P, (x)=x*—x—1. Hence,
P,_,(x)=Ax*+4Bx+ D.

We seek the integral in the form

— (Ax? R PP __dx
[=(Ax*+Bx+D)Vx +2x+2+1<§1,m.
Differentiating this equality, we obtain
' B—x—1
]/x2+2x+2 B
- PEREG 2| B x+1
(2Ax+ B)V x* 4 2x+ 2+ (Ax* + Bx + D) Vst
K
7=

Reduce to a common denominator and equate the numerators
x*—x—1=(2Ax+ B) (x> 2x+2) 4+ (Ax2 + Bx -+ D) (x - 1) + K.
Equating the coefficients at equal powers of x, we get the following

system of equations:
2A+A=1, B+4A+B+A=0;
2B+4A4D+B=—1; 2B4+D+K=—1.

Solving the system, we obtain

. B—_23. =1.
’ B‘—'—G, D—‘61

K=+

A= 3

w| =

Thus,
1 5 1 -5 1 dx
I=(§x2—€x+g> Vx2+2x+2+?SVx*T‘__2_x+*2,
where

I, = =In(x4+14+Vx2+2xF+2)+C.

s‘ dx — dx
JVerere SV(x+1)2+1
5.4.4. 1=V I&F—tx+3dx.

Solution. Transform the integral to the form

J= 4x2 —4x+4-3 dx=(Ax+B)l/-m+K S'V4 dx
22

T ) Vier—4x13 —dx 13
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Applying the method of undetermined coefficients, we get
S Ax® —4x 1 - P S—
! ( >V4x 4x+3+§1/ 2x—-l) T
=4%x_~ﬁuﬂ—u+&+5m@m—uwwﬂ_u+$+a
9x3 —3x2+2
5.4.5.
jVSx‘ 2x-|—l

5.4.6. S VX fx+ 1 dx.
547 [ = (x4 dx .
(x—1) (x+22 V@ fx+1

Solution. Represent the given integral as follows:

(x+4) dx =g x+4 . dx
=D (x+22Verrtl x—DE+2? YV rerl

Expand the fraction (x—_-f—)—'—a%gg into partial fractions

x+4 _
x—1)(x+22 x—1 +(x+2)2 + x+2

Find the coefficients

5 2 5
A———g, B-———-——3 ; D=——9.
Hence,

IZS [ 5 2 5 J dx -
9(x—1) 3(x+2)?2 9(x+2) Vx 2_|_x__|_|
_E dx (‘
i—1) Vefrrl d(x+2VVkL+le

dx
x+9Verxri’

The first integral is calculated by the substitution x——l=-lt-, the

second and the third by the substitution x+2=ti.

We leave the solution to the reader.
5.4.8. jf——ﬁigé;qu
V2 +4x43
5.4.9. 5‘3x3+5x2—7x—|-9
Ve +5x+7
&mw.y———ﬂ;1=n
(x+18V 2 +2x
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5.4.11. j xdr
(x2—3x+2)Vx2—4x+3
dx
5.4.12. §<x+1)3 e

(x2—1)dx
1 .
5.4.13. § VI+3x2—|-x4

§ 6.5. Integration of a Binomial Differential

The integral Sx”‘ (a+bx"dx, where m, n, p are rational num-

bers, is expressed through elementary functions only in the follow-
ing three cases:

Case 1. p is an integer. Then, if p > 0, the integrand is expanded
by the formula of the Newton binomial; but if p <0, then we
put x= t*, where k& is the common denominator of the fractions m
and n.

Case II. ”% is an integer. We put a--bx"=t¢*, where a is
the denominator of the fraction p.

Case III. m—nﬂ—l—p is an integer. We put a+ bx"=t*x", where a
is the denominator of the fraction p.

5.5.1. 1= /% (2 4V ) d.

1 1\2
Solution. [ = Sx—? (Q—I—x—?—) dx. Here p=2, i.e. an integer; hence,
we have Case I.

I=Sx-:*—<x+4xl7+4)dx=g(x%—|—4x%+4x%>dx=
—l— xI +3x5 +C.
55.2. I=x _%(1+x'§—)—ldx.

5.5.3. I—SVH-?/X

2 .
Here Mm=—z;, n=xg; p=x; = =1, ie. an

integer.
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We have Case II. Let us make the substitution
1

2
1463 =14 5x Tdv=2adt.
Hence,
1\3
1=65t2dt=2t3—|—C=2(1+x3>2 +C.

5.54. =7 (2—|—-XT)-‘1—
555./:5 (1+ﬁ>§
1

5.5.6. [= Sx‘“ (l—l—x4>_7dx.

Solution. Here p=—% is a fraction, mT_H=_—1;t—I=—-z—a]so
a fraction, but mt 1+p=—%———;—=—3 is an integer, i.e. we have
Case III. We put 1 4 x* = x*¢2. Hence

1 tdt
x= T dx=——————_5_-.
=11 2(2—1)*4

Substituting these expressions into the integral, we obtain

[=__21_((t2_1)]4_l(t2til>_-;_ tdt-5—=
-
_—-—g(t2 Drdl=— b —

—’-+C.

Returning to x, we get
| e | e |
’=—WV(1+’C4)"’+3—X¢; I/(l+x4)3—2—?l/l—|-x4—|—C.

sa. (V55
5.5.7. o-——-—‘-/-—;—‘— X.
5.5.8.

Sy
5.5.9. st xz)zdx.

: dx
50 . . e
5.10 5 x4 l/-l+xz
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Id -7 [T
5.5.11. (/2 ) 147/ % dn.
5.5.12. S —
ﬁi/“F;

§ 5.6. Integration of Trigonometric and Hyperbolic
Functions

I. Integrals of the form
1=g sin™ x cos™ x dx,

where m and n are rational numbers, are reduced to the integral
of the binomial differential

n—-1
1=(tm(1—)7 dt, t=sinx

and are, therefore, integrated in elementary functions only in the
following three cases:

(1) n is odd (— an mteger)

(2) m is odd (ﬁ-;ll an integer)

(3) m+n is even ("H 1-1— —5— an integer).

If n is an odd number, the substitution sinx=1¢ is applied.

If m is an odd number, the substitution cosx=¢ is applied.

[f the sum m+4-n is an even number, use the substitution
tanx=1¢ (or cotx=1).

In particular, this kind of substitution is convenient for integrals
of the form

Stan”xdx (or Scot"xdx),

where n is a positive integer. But the last substitution is inconve-
nient if both m and n are positive numbers. If m and n are non-
negative even numbers, then it appears more convenient to use the
method of reducing the power with the aid of trigonometric trans-
formations:

cos?x =—2l—(l + cos 2x), sin2x=—21—(l—cos 2x)

1
or sinxcosx =—sm 2x.

5.6.1 I—S sin x

/COSX




§ 5.6. Integration of Trigonom. and Hyperbolic Funct’s 231

Solution. Here m=3 is an odd number. We put cosx=t¢,
sin xdx= —dt, which gives
1

1=—S(1_ﬂ)t dt = —3(% +
=3/ cosx cos‘x—-l)

i
E

w

+C=

5.6.2. | =Scﬁs—3—"dx.

sinb x

5.6.3. | = S sin® x cos® x dx.

Solution. Here both m and n are positive even numbers. Let us
use the method of reducing the power:

1=%S\(25inxcosx)‘coszxdxz%Ssinﬂx(l +cos2x)dx =1,+1,.

The second of the obtained integrals is calculated by the substitu-
tion:

sin2x=t, cos?xdx=ldt,
12=3l25‘sin42xc052xdx— St‘dt-—320+C— sin® 2x +G.

We again apply to the first integral the method of reducing the
power:

1 . 1
11=§§§51n4 2x dx=T2—8S(1—C054x)2dx=

=l—;§(x—%sin 4x>+2—é6S(1+0038x)dx=

3 | . 1 :
=§5§x—m51n4x+msm8x+c.
And so, finally,

= ﬁ%x—Q—é-sin 4x—|—%14—831n 8x+ﬁ)sin” 2x +C.
5.6.4. [ = 55;‘;6"

Solution. Here both m and n are even numbers, but one of them
is negative. Therefore, we put

. r .
tanx=t, cos—zx—l—l-tz,

dx
cos?x

=dt.

Hence,
tan3 x tan X

I={pQ+ma=54+5+c="021 202 .
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5.6.5. [ = S cost x

sin2 x

Solution. Here we can put cotx=1¢, but it is simpler to integrate
by expansion:

| = (l——.sinzx)2 dx:S (

sin?x

—2- sin?x )dx=

sin? x

= —cotx—2x+—2—5 (I —cos2x)dx =

(C tx+51r;2x+ >+
dx
cosdx’

5.6.6. /=

dx
5.6.7. [—S\m.
Solution. Here both exponents (— %] and —%) are negative

. 11 1 .
numbers and their sum — ——-—=—4 is an even number, there-

3 3
fore we put
tanx=1¢; -d—];=dt.
Ccos“ x
1+

—§c054x /tan“ —_S l/t“

—S< R 3>dt=—-g-t_%—%t_%+(3=
_ 3 (144 tan%x)
8tan2xla/m
5.6.8. Find the integrals of tanx and cot x.
Solution.

Stanxdx.—Ssmx =—In|cosx|+4C

sin x

Scotxdx——Scosxdx— In|sinx|+C.

5.6.9. 1=Stan7xdx.
Solution. We put tanx=t¢, x=arctant; dx=-1+
.odt
I= Sz th=S<t-’»—t3+t lJrﬂ>dt
s g2
=§—T+-2-——2'1ﬂ(1+t2)+c=

=%tan"x-——i—tan“x—i——étan%—kln[cost—C.

l+t‘ We get
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5.6.10. (a) I = Scot“xdx; (b) I= g tan® x dx.

5.6.11. 1_§C°s * dx.

sin® x
Solution. Here sinx is raised to an odd power. Let us put
cosx=1, —sinxdx=dt.

We obtain an integral of a rational function.

cos‘xsmx

Here, it is simpler to integrate by parts than to use the general
methods of integration of rational functions (cf. Problem 4.4.1 (b)).
Let us put

t dt
U= ta; dv= (]_—:72)_2 .
Then
3 11, . 1
du = 3¢ dt, 0—2—‘——(1 -
Hence,

I 3¢ 12dt
[__2(1—t2)+_2—5‘l—t‘2_

s 3 t2—1+1
2(l—t2)+ S =g dt=
13 l-i—t _
—aem gt | |+C
cos"x 3 I+ cos x
_2sin2x—7cosx+7 ] +C.
5.6.12. 1=Si'::jd

II. Integrals of the form SR(sin x, ¢os x)dx where R is a rational
function of sin x and cos x are transformed into integrals of a rational
function by the substitution:

tan( )—t (—n < x < 7).

This is so-called universal substitution. In this case
. 2A 1—z2
Smx:l_—FF’ COSX = 7753

. _ 2dt
x=2arctant, dx_l+t2'
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Sometimes instead of the substitution tan-;f-=t it is more advan-

tageous to make the substitution cot -;-:t 0 < x < 2m).

Universal substitution often leads to very cumbersome calculations.
Indicated below are the cases when the aim can be achieved with
the aid of simpler substitutions:
(a) if the equality
R (—sinx, cos x) =—R (sin x, cos x)
or
R (sin x, —cos x) =— R (sin x, cos x)
is satisfied, then it is more advantageous to apply the substitution

cosx =t to the former equality, and sinx=¢ to the latter;
(b) if the equality

R (—sinx, —cosx)= R (sin x, cos x)
is fulfilled, then a better effect is gained by substituting tanx=¢

or cot x=1=¢.
The latter case is encountered, for example, in integrals of the

form S R (tanx)dx.

5.6.13. 1=§ dx

sin x (24 cos x—2sinx) *

Solution. Let us put tani;-=t; then we have

2d1
[ T+ 72 (4t
= 2f ( T—2 4 )‘“Sz(tz—4t+3)'

14-¢2 24_1—{—12 142
Expand into simple fractions
142 A B D
FE=3)(—1) =7ttt
Find the coefficients
1. _ 5. _
A=?, B= 35 D=—1.

Hence
dt dt dt
1_3§ + =3 5171=
ln|t|—|— In|t—3|—In|t—1|4+C=

=—3-ln|tan7

+§1n'tan?—-3|—ln|tan-§——l |+c.
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dx
5.6.14. [ =\ g maes
dx
5.6.15. 1= o+ -

. . . 1
Solution. If in the expression mT)

—sinx for sinx, then the fraction will change its sign. Hence, we

we substitute

take advantage of the substitution #=cosx; df =—sinxdx. This
gives
di
~§ =me=y -
Since
1 _@—2y—(1—22) 2 1
I—=ry(1—22)  (1—)(1—22)  1—22 1—¢2°
then
o dt a1 1—|—t
1—251——2—12—S‘l—t2_]/'21 1__.11/'2 ’_I—C—
l—|—l/7cosx 1 l—cusx C—=
1 II—VQ cos x n l—|—cosx +
l—|—1/2 cos x Inlt x C
V2—1 )l—ﬁcosx + n’ an 2 ,+ '
sin? x cos x
5ﬁJ&[=S§E¢6§

Solution. Since the integrand does not change sign when sinx
and cosx do change their signs, we take advantage of the substi-
tution
dx

t=tanx; dt="—T.
COos“ X

Hence,
=

tan2 x.cos4x dx _S 12 dt
(tanx41) cos?2x ) (t+1) (2+1)2°

Expand into partial fractions

£ Bi+D , Et+F
e R == e

Find the coefﬁcients

Lo oo L,

! 1.
2’ 2

. — l . —
A— ; B_—T’ D’“T’ E=
Hence,

a1 (i—1 10 t—1
I="4'St_1_TSt2—|—1dt+§‘ (t2+1)2dt’
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N E A R B
I= ln]/ﬂ? T ite

=%ln]sinx—}-cosx]—’Tcosx(sinx—l-cosx)—l-c.
5.6.17. 1= [ 220 —ax,

sin2 x4 2 cos? x

+C=

Solution. Dividing the numerator and denominator by cos?x and

substituting tanx=1¢; =dt, we obtain

cos2
2tanx+3) ——
. 2tanx+3 . os‘x _
I—Ssin2x+2cos2xdx_5 tan2 x4 2 -
?ﬁig dt=In (t2—|—2)+-]—/—_arc tan—— V_—I—C—-
=In (tan2x+2)—|—V_arctan t]a/n_x+C.

5.6.18. ] = gls‘“ dx.

+sinx
Solution. This integral, of course, can be evaluated with the aid

of the universal substitution tan%=t, but it is easier to get the
desired result by resorting to the following transformation of the

integrand:

sin x sin x (1 —sin x) smx(l——smx)
1+sinx (14sinx) (I—sinx) cos? x
__sinx  sin?x _ sinx

T cos®x cosZx  cos? x_tan2 x.
Whence
! =S :;szxdx Ssec%cdx-l—Sdx—COS)C —tanx -+ x4 C.
5.6.19. | =

costx sim x ¥
Solution. Here the substitution tanx=1#¢ can be applied, but it
is simpler to transform the integrand. Replacing, in the numerator,

unity by the trigonometric identity raised to the second power, we
get

dx =

[ — (sin2 x+ cos? x)2 dx — sin% x -2 sin2 x cos? x -+ cost x
cos? x sinz x cesd xsinx

_ (sin? x4 2
_S costx X 2 coszx sinZ x _Stan

=§tan3x+2tanx—c0t x+C.
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[I1. Integration of hyperbolic functions. Functions rationally de-
pending on hyperbolic functions are integrated in the same way as
trigonometric functions.

Keep in mind the following basic formulas:

cosh?x—sinh?x =1, sinh2x=-é— (cosh 2x —1);

cosh? x = —;— (cosh2x+1); sinhxcoshx= % sinh 2x.

2
coshx=l+t ;

2
If tanh—:t then smhx— — StE

2dt

x*2Artanht—ln(l—H) (—1<t< 1) dv=7220

t
5.6.20. [ = g cosh? x dx.

Solution.

5 (cosh2x 1) dx———smh 2x+—x+C

5.6.21. | = Scoshf‘ xdx.

Solution. Since cosh x is raised to an odd power, we put sinhx=#;
coshxdx=dt. We obtain

I=Scosh2xcoshxdx=S(l+t2)dt=t+%—|-c=
:sinhx+%—sinh3x+C.
5.6.22. Find the integrals:

(a) gsmh%ccosh%cdx (b) Sm.

§ 5.7. Integration of Certain Irrational Functions with the
Aid of Trigonometric or Hyperbolic Substitutions

Integration of functions rationally dependingonxand ) ax®+bx+c
can be reduced to finding integrals of one of the following forms:

I. SR (t,V £ ¢®) dt;
1. {R(t, VPE—) dt;
HI. [ R(t, V @—pt®) dt,
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where ¢= x—l—%; ax®+bx+4c= 4+ p*? 4 ¢* (singling out a perfect

square).

Integrals of the forms I to III can be reduced to integrals of
expressions rational with respect to sine or cosine (ordinary or hy-
perbolic) by means of the following substitutions:

I. t=2tanz or ¢=Zsinhz.
p p

1. t=Zsecz or ¢
D

Il

9 cosh z.
p

IHI. t=2sinz or ¢=2tanhe.
p p

5.7.1. = gy~ ———
! ( V G+ 2+ 123
Solution. 542x+x*=4-+ (x4 1)%. Let us put x4 1=¢. Then

dt
—f VE+2x+ 223 _§ (44123

We have obtained an integral of the form I. Let us introduce
the substitution:

. 2dz N _
t=2tanz di=—q73; Va+t2=2)1+tan>z = —
We get
1
/= T coszdz =
L
1 . 1 tan z 1 2
SOy POy e O

= _xji__i_c
4V 5+2x+x

dx
5.7.2. I_LHI)?Vm.
Solution. x*+2x+2=(x+1)>41.
Let us put x-+1=¢; then

dt
eyerl’
Again we have an integral of the form I. Make the substitution
t=sinhz. Then

dt =coshzdz; V' t2+1=)1+sinh®z=coshz.
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Hence,
cosh z dz dz
= Ssinh-’ zcoshz ) sinhZz —cothz4C=
_ Vi+tsinh®z . V“+t R TET
- sinh z +C= +C= x4+ 1 +C.

5.7.3. I={x)V ¥ —1dx.
5.7.4. 1=S————”ff’dx.

5.15. 1={V@—1)dx.
Solution. Perform the substitution:

x=cosht; dx=sinhtdt.
Hence

1= {V {cosh®T—T)sinh ¢ dt = {sinh* t dt =
* /cosh 2f —1 2

= (=) at=

=%Scosh22tdt—%5cosh2tdt—|——;—Sdt=

=lS(cosh4t+l)dt—isinh:Zt—}—%t:

=— sinh 4¢ — —smh 2t+ t+C.

Let us return to x:
t=Arcoshx=In(x +V*x* —1);
sinh 2¢ =2sinhf cosh =2x V/ x* —1;
sinh 4f =2 sinh 2¢ cosh 2t = 4x 1/ x*—1 (2xt —1).

Hence
I=tx @ =)V E—T—gxV¥@—1 SV FE=T)+C.
dx
5.7.6. [ = .
g(H— V) Vi—x

Solution. We make the substitution:
x=sin*t, dx=2sintcostdt



240 Ch. V. Basic Classes of Integrable Functions

and get
2sint cos ¢ dt . 2.dt

(14sint?) V sin? { —sin4¢ - l+sint=
_25‘ Sty —9tant—

0s? ¢ ost+c—

_21/}_ 2 _2(V x—=1)
T Y= Vl——-x+c_ Vi—=x +C

5.7.7. I={ V3 "2x—xdx.
dx

5.78. = S — .
(x2—2x+5) %

§ 5.8. Integration of Other Transcendental Functions

5.8.1. [= ln_x dx.

Solution. We integrate by parts, putting

dx
u=Inx; dv=§-z;

du=%x; v=——)lc—;
S
5.8.2. 1=5]';l"f‘x.
5.8.3. | = ﬁ;—i;‘x?

Solution. Let us put: e*=1; e*dx=dt. We get:

dt
(142"

Apply the reduction formula (see Problem 4.4.1):

I =

! ar__,

1=12=_—_—2(12+1) +‘§u 1+tz’

l 1 * !
I=2(12—+l)+~2-arctant +C=2—(i%_—63;—)+?arctane”+co

5.8.4. | = Se"‘ In(e* + 1) dx.
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Solution. We integrate by parts:
u=In( +1); dv=e *dx;

du dx; v=—e"%;

ex
B

eX 41 —eX

[=—e> ]n(l—i—e")+5%=—e"‘ln(l —|—e")—|—SW—dx=
=—e"*In(l4e*)+x—In(l +e*)+C.

eaarctanx
5.8.5. I=S—-——3—dx.
A+x)*
5.8.6. | — (xarctanxds
V V1+x2

Solution. Integrating by parts, we get

d
u=arctanx; dv-—=——r;
l/l —+ x2

dx | /1L 2
du:w, v=V1+x%

I= Vl-l—x?arctanx—SVl + x? lj_xxg =

=) T+xarctanx—In(x + V¥ +1)+C.
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§ 5.9. Methods of Iintegration
(List of Basic Forms of Integrals)

No. Integral Method of integration

1 S Flo )] (x)dx Substitution ¢ (x)=¢

2 S f(x) o' (x)dx Integration by parts
(1o @a=f@em—{omf @ads

This method is applied, for example, to
integrals of the form \ p (x) f (x) dx, where
p (x) is a polynomial, and f (x) is one of the
following functions:

e**; cos ax; sinax; Inx;

arc tan x; arc sin x, etc.
and also to integrals of products of an expo-
nential function by cosine or sine.

3 Sf(x) '™ (x) dx Reduced to integration of the product
f (x) @ (x) by the formula for multiple in-
tegration by parts
§ 700 ¢m (o) dre=F () 9= (9—

— " (x) 7= (X) 4 [" (x) ¢~ (x) —...

coe (=D (x) @ (x)
(= § (1) ¢ () ax
4 S e** p, (x) dx, Applying the formula for multiple integra-
tion by parts (see above), we get
where p, (x) is a polyno-
mial of degree n. Se’x P (x)dx=
x| Pe ) Pa(®) | pn(®)
__ex[ P -+ o et
[{)
X
e 2 ]
5 _Mx+N X, Substitution
x*++px+gq »
p?—4g <0 x+—2-=t
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No. Integral Method of integration
6 =\ duction formula is used
n S FERmy Reduction
/- x |, 2n—3 /
" on—2)(x2 1)1 2p—2 "n1
7 Sp(x) dx, where P(x) Integrand is expressed in the form of a
Q(x) Q(x) |sum of partial fractions
is a proper rational frac- P(x) A
tion QX x——xl) +(x——x )2+ +(x—— )l+
Q ()= (x—xy)* (x—
Do et | ettt
+q)% ... Myx+ N, 2x+N2
+”'+x2+px+¢7'l"(x“rzm—qu)2+
M X+ Nk
R S
(x*+px+-q)F
m r
8 ry e Reduced to the integral of a rational frac-
(S\R(x, LR )dx, tion by the substitution x=t¢#, where k£ is a
where R is arational func- | common denominator of the fractions
tion of its arguments. m ’
v s
9 g’ ax-+b 71 Reduced to the integral of a rational frac-
) Rix (= a d%, | tion by the substitution
where R is a rational ax+b —¢n
function of its arguments. xtd
10 Mx+ N

————dx

V ax2+bx ¢

By the substitution x+——_t the

is reduced to a sum of two integrals:

Mx+N
X T gx=M
Vartboxtec a flfatu-m—’—
Ny | ——— .
* ’SVat%m

The first integral is reduced to the integral
of a power function and the second one is a
tabular integral.

integral
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Integral

Method of integration

S R (x, Vax* T bx +c) dx,

where R is a
function of x and

Y ax? —+bx+c

rational

Reduced to an integral of rational fraction
by the Euler substitutions:

Vadtboxtc=t+xV a (@>0),
Vadtbxte=tx+ Ve (c>0),
Vax®Fbx+ c=t (x—x;) (dac—b% < 0).
where x; is the root of the trinomial ax?-+

+bx+c.
The indicated integral can also be evalua-
ted by the trigonometric substitutions:

V 2 —4ac
b 2a
V b2 —4ac

2a

sin ¢

cost (a <0,
4ac—b2 < 0)
V b*—4ac
2a
V b*—dac
2a

sec {

cosect (a >0,
4ac—b% < 0)
l/-4a¢:—b2
b 2a
V dac— b2
2a

tant

cott (a >0,
4ac—b* > 0)

12

4—(}6__)—-&,

Vax® +bx+c
where P, (x) is a polyno-
mial of degree n.

Write the equality

%:Qn_l(x) Vax* fbox+c+
Vax* Fbxtc
dx
k —_—,
+ jlfax?-i—bx-i—c
where Q,—;(x) is a polynomial of degree
n—1. Differentiating both parts of this equa-
lity and multiplying by Vax’z—[—bx—|-c, we
get the identity
Py, (1) = Qn-1 (x) (ax®+bx+-¢) +
1
45 Q-1 () Qax40)+4,

which gives a system of n-+1 linear equa-
tions for determining the coefficients of the
polynomial Q,—;(x) and factor &.
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Integral

Method of integration

And the integral

‘S‘ dx

Vax? +bx+c

is taken by the method considered in No. 10
(M=0; N=1).

13 dx This integral is reduced to the above-con-
(x—x;)m V ax?+bx +c |sidered integral by the substitution
1
x—xl—T
14 Sx'” (a+bxm)P dx, This integral is expressed through elemen-
tary functions only if one of the following
where m, n, p are rational | conditions is fulfilled:
numbers (an integral of a| (1) if p is an integer,
binomial differential). m
2) if P is an integer,
@3) if m;ll_l—l—p is an integer.
Ist case
(a) if p is a positive integer, remove the
brackets (a+bx")P according to the Newton
binomial and calculate the initegrals of powers;
(b) if p is a negative integer, then the
substitution x=t¢%, where £ is the common
denominator of the fractions m and n, leads
to the integral of a rational fraction;
2nd case
if m;l—l is an integer, then the substitu-
tion a4 bx" =tk is applied, where %k is the
denominator of the fraction p;
3rd case
m-1 . . .
f ——;l———}—p is an integer, then the substi-
tution a-bx"=x"tk is applied, where & is
the denominator of the fraction p.
15 SR (sin x, cos x) dx Universal substitution tan —=—¢.

2
If R(—sinx, cosx)=—R (sinx, cosx),
then the substitution cos x=1¢ is applied.
If R(sinx, —cosx)=—R (sinx, cosx),
then the substitution sinx=1¢ is applied.
If R(—sinx, —cosx)=R (sinx, cosx),’

‘then the substitution tan x=¢ is applied.
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No. Integral Method of integration
16 | (Reinhx, coshyydx | The substitution tanh =t is used. In
this case
. 2t 12 24t
sinh x——-]—_Tz-, COth—'l—_——ti, dx—l_tz.
17 S sin ax sin bx dx Transform the product of trigonometric
functions into a sum or difference, using one
Ssin ax cos bxdx of the following formulas:
sin ax sin bx =
S cos ax cos bx dx 1
=5 [cos (a—b) x—cos (a-{-b) x]
cos ax cos bx =
=—é- [cos (a—b) x+cos (a4 b) x]
sin ax cos bx =
=% [sin (@—0b) x+sin (a4 b) x]
18 S sin™ x cos” x dx, If m is an odd positive number, then apply
. the substitution cos x=¢.
where m and n are inte-| If n is an odd positive number, apply the
gers. substitution sin x=1¢.
If m~+n is an even negative number, apply
the substitution tanx=*/.
If m and n are even non-negative numbers,
use the formulas
sin? x— 1—cos2x : costy— I +cos2x
2 2
19 S sin? x cos9 x dx Reduce to the integral of the binomial
differential by the substitution sin x=¢
0 < x < m2), ) ng-1
» and g—rational num- SsmP xcos‘Ucdx:S 1P (1 —)7-1dt
bers. (see No. 14).
20 SR (e?¥) dx Transform into an integral of a rational
function by the substitution e®* =¢




Chapter 6

THE DEFINITE INTEGRAL

§ 6.1. Statement of the Problem.
The Lower and Upper Integral Sums

Let a function f(x) be defined in the closed interval [a, b]. The
following is called the integral sum:

n-=1
In= 3 [ &) Ax,
where a=x, < %, < x, <... < x,_, < x,=b,

Axi=x,-+l—x,~; gi € [xi» xi+l] (t::O, l’ Tt n—l)
n-1
The sum S,= X, M;Ax; is called the upper (integral) sum, and
i=o0

n-=1
s, = > m;Ax; is called the lower (integral) sum, where M;=
i=0

= sup f (x) [m;=inf [ (x)] for x € [x;, x;,,].
The definite integral of the function f(x) on the interval [a, b] is
the limit of the integral sums
b n-1
Sf(x) de=1lim 2 f (&, Ax; when max|Ax;| — 0.
i=0

a

If this limit exists, the function is called infegrable on the inter-
val [a, b]. Any continuous function is integrable.

6.1.1. For the integral
T
S sin x dx
0

find the upper and lower integral sums corresponding to the division
of the closed interval [0, n] into 3 and 6 equal subintervals.
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Solution. Divide the closed interval [0, m] into 3 equal parts by
the points:

T 2n
x,=0, =7, X=T7, X=T

The function sinx increases monotonically on the interval [O, %] R

and therefore for this interval we have m,=sin0=0, M,=

= sin 3—=Ki. The least value of the function on the interval

[—’;T, %n] is ml=sin—g—=g, and the greatest value is M, =
=sin%= 1. On the interval [?—g—, n] the function sinx decreases

monotonically and therefore

2nl/§

m2=sinn=0, M2=sin—3—=—2—.

Since all Ax, are equal to % ,

2 — —
Sy = 2 My Ay =2 <0 +£23-+ o) == }5/3 ~0.907,
k=0

When subdividing the closed interval [0, =] into 6 equal intervals
T T 2n
by the points x,=0, x, = 6’ Xo=g, Xg="3, Xg=73, X =

= xs=m, we find by analogy:

5
m,=0, Mo=sin%-=%,
mlzsin—g—=%, Ml_sm%=-'{2£,
mz._smﬁ—g, M,=sin =1,
ma_sm%=§, My=sin =1,
m,,._sm%n=-;—, M4=sm2;=‘—/;,

. . 1
my=sinn=0, M5=sm_g'.=§,
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For this division we obtain
Tt 7 qQ
Sy =-6— ('n0+m1+ cee +m5):T(l+l/.3) =~ 1'43’
Sy=% (My-+ M+ ... + M) =% (3+V3) =~ 2.48.

As would be expected, the inequalities

44

ssgssggsinxdxg&;gsa

0
hold true (the exact value of the integral is equal to 2).
6.1.2. At what 6 >0 does the relation

n—-1

{ sinxdc— ¥ sing, Ax,| < 0.001
b i=o

follow from the inequality max Ax; < 8.

Solution. Since s, < 1,<S,, then for the required inequality to
hold true it is sufficient that the upper and the lower integral sums
differ by less than 0.001:

0<S,—s, < 0.001.

But
n—1 n—=1
Sp—5$y = 2 (My—m) Ax; <8 X (M;—m,),
i=0 i=o0
where M; and m; are the greatest and the least values of the func-
tion sinx on the interval [x;, x;,,] (i=0,1, ..., n—1). Assuming

for simplicity that the point % is chosen as one of the points of

division and taking advantage of monotonicity of the function sinx
k11

on the intervals lO n] and [7,

Tl n] , we obtain

n-1
.. .
tz::o M;—m;) =2 (sm 5 —sin 0) =2.
Consequently, the required inequality is satisfied if 26 < 0.001,
i.e. § < 0.0005.

6.1.3. Show that the Dirichlet function [see Problem 1.14.4 (b)]
is not integrable in the interval [0, 1].

Solution. In dividing the closed interval [0, 1] into a fixed num-
ber of parts we must take into consideration, in particular, two
possible cases: (1) all points §; are rational; (2) all points §; are
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irrational. In the first case the integral sum is equal to unity, in
the second to zero. Hence, no matter how we reduce the maximum
length of subintervals, we always get integral sums equal to unity
and integral sums equal to zero. Therefore, the limit of integral
sums is non-existent, which means that the Dirichlet function is
not integrable on the interval [0, 1].

6.1.4. Find the distance covered by a body in a free fall within
the time interval from f{=a sec to ¢=0 sec.

Solution. A body moves in a free fall with constant acceleration g
and initial velocity v,=0. Consequently, the velocity at the instant ¢
is equal to the velocity increment within the time interval from 0
to ¢, i.e. v(f)=Av. For a short time period Af the velocity incre-
ment is approximately equal to the acceleration at the instant ¢
multiplied by Af{. But in our case acceleration is constant, there-
fore Av=gAt¢, and hence, v (f)=gt, since At={—0=¢.

Let us subdivide the time interval from f=a to ¢f=0b into n
equal parts; then the duration A¢ of each subinterval will be equal

to At ="=% We assume that during each subinterval of time the

body moves uniformly with a velocity equal to its velocity at the
beginning of this interval, i.e.

Uy =g4a,
Ul=g<a+ 1 b:a>,
Uz=g(a+2 b;a) ’

............

Whence we find the distance covered by the body during the ith
subinterval: ﬂ—@n—_—a). The entire distance covered by the body is

approximately equal to

b;a(vo—l—vl—l— oot v, )=

b—ag [na+lb—a+2 b—a

n n

S S, =

b—al]
— —

+...4+(n—1)
=(b—a)g [a + b;an(nQ—])] )

With n increasing the distance covered can be evaluated more accu-
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rately. The exact value of s is found as the limit s, as n — oo:
s= lim s,= lim g(b—a) [a —|—-;—(b——a) (1 —%)] =
1
—g(b—a) [a +-2—(b——a)] £ — ).

Since s, is an integral sum

n-=1

Se= 3. U, AL, (At,:At:”;"),
i=o

the distance s is an integral:

b b
s=S vdt=‘s gtdt=% (b*—a?).
6.1.5. Proceeding from the definition, compute the integral

1

Sxdx.

0
Solution. By definition,
1 n—1
Sxdx=lim 2t Ax; as max Ax; — 0,
i=0

0
where

O=x, <x, <...<x,=1 E€ [xi» xi+1]»

Ax; =X —X;.

1. Subdivide the closed interval [0, 1] into n equal parts by the
points x;=— (i=0, 1, 2, ..., n).

The length of each subinterval is equal to Ax,-=’ll—, and —,17 —
as n— oo,

Let us take the right-hand end-points of the subintervals as the
points & &= ="11(=0, 1,...,n—1).

Form an integral sum:

i+1 1 1
L=S,=x 2. L1 poq .  yp=tldl
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Hence,

‘Sl‘xdx=—é—.

0
2. Using this example, we will show that for any other choice
of points &; the limit of the integral sum will be the same.
Take, for instance, the mid-points of the subintervals as §;: §; =
1
i+
2

(i=0, 1, ..., n—1).

Form an integral sum

n-1
204+1 1 1 1 2n2 1
n= . 0—27';':% [1—[—3+5—l—... +(2fl—l)J =m=?.
Hence
Jim =7

6.1.6. Proceeding from the definition, compute the integral:

b
(xmdxe (me=—1, 0<a<b).

Solution. In this example the following points can be conveniently
chosen as points of division:
1 [1 n

b ~n— b n b I3
X, =a, xl=a<—a—) y ey xi=a<-;) y e xn=a(;> =:b.
They form a geometric progression with the common ratio

1

b 7
1=(z) >1.
The length of the ith subinterval is equal to
Ax;=aq™'—aq'=aq' (9—1).

Therefore the maximum length of the subintervals equals max Ax; =
n—1 1

=aq”‘1(q—1)=a<—2—> ! [(—b—)"—l] and tends to zero with

a
increasing n, since limg=1.

n - o

Now let us choose the right-hand end-points of the subintervals
as §; Ei=x;,,=aq'* (i=0, 1, 2, ..., n—1).
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Form an integral sum:

n—-1 n—1
— [2‘6 EZ‘"Axi — i=20amq(i+1>maqi (g— )=
_____am+1(q_1)qm [1 +qm+1 + ... +q(n—1) (m+l)] —
mq(m+1)n_]

—1
=a" (=1 ¢" T = (0" —a" ) " 4_“q+‘—1 .

Let us calculate the limit of the integral sum as max Ax; — 0,
i.e. as g— 1t

lim [, = (b™*1—a™*1) lim g™ 9— = (b™*t1—qmt1) ——
q - 1

m+1_]
Thus,

1
m—+1-

b
Sx”‘dx:

a

1

m (bm+1 —(Z”H'l).

6.1.7. Proceeding from the definition, compute the integral:

2
de
—x—.
1

Solution. Subdivide the interval [1, 2] into n parts so that the
points of division x; (i=0, 1, 2, ..., a) form the geometric pro-
gression:

X=1 %=0¢ %,=¢" %=0% ..., x,=q"=2,
whence g= /2.
The length of the ith subinterval is equal to
Ax;=q""'—q'=¢q' (g —1),

and so max Ax;=¢g" '(q—1)—0 as n— o0, i.e. as g — 1.

Now let us choose the right-hand end-points of the subintervals
as the points §,, i.e., §;=x;,,=¢"*".

Form an integral sum:

n-1

L
Zg‘, M= X el D=2(g—1)=—n (27 —1).

i=0 2!!
(L

| o)

lim 1, = lim 22— —n2,

n- o n-» o —n—

2

1
since 2" —1~%1n2 as n— oo.
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And so,

£i—’f=1n2.
X

ol e Y'Y

6.1.8. Evaluate the integral
5

1= VB —xdx,
0

proceeding from its geometric meaning.

Solution. The curve y=)/25—x* is the upper half of the circle
x* 4 y>=25. The portion of the curve corresponding to the variation
of x from 0 to 5 lies in the first quadrant. Hence, we conclude
that the curvilinear trapezoid bounded by the lines x=0; x=35;
y=0, and y=)'25—x* is a quarter of the circle x*- y*=25; and
its area is equal to 2

4
Hence,
5
1={yom—pa=3".
0

6.1.9. Evaluate the integral, proceeding from its geometric
meaning:
5
I1={ (4x—1)dx.
1
6.1.10. Prove that

Izgl/a‘l—x2 dx=%xl/a2—x2 —{——a;— arcsin% 0<x<a).
0

Solution. The integral
g

x

[= S V @®—2 dx
0

expresses the area Sp ., of the por-
tion of a circle of radius a lying in
the first quadrant (see Fig. 59).
This area equals the sum of the
areas of the triangle OMx and the
sector OAM.

Sope=L ==V a*—x~
Fig. 59 ons=3 =3V
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The area of the sector

1
SOAMZ?a2t,

. X
where sint = =

Hence,

S _a . X
OAm-—Tarcslnz',

and consequently,

X Y a? .X
=7l/a2—x2+—2— arcsin—.
6.1.11. Proceeding from the geometric meaning of the integral,
show that
2n 1 1
(a) S sin*xdx =0; (b) S e % dx==2 Se"‘zdx.

0 -1 0

Solution. (a) The graph of the function y=sin3x is shown in
Fig. 60. Let us show that the area situated above the x-axis is
equal to that lying below this axis. Indeed, let m<Cx<C2n, then

x=mn+4x, where 0<{x,<{m and sin®x=sin?(w+x,) =—sin®x,.
Therefore, the second half of the
graph is obtained from the first one ¥
by shifting it to the right by =
and using the symmetry about the 1/9\,, o
x-axis. Hence, 7 z
2n ‘ \S‘/
S sin®xdx=0.
0 Fig. 60

6.1.12. Given the function f(x)=x* on the interval [—2, 3],
find the lower (s,) and the upper (S,) integral sums for the given
interval by subdividing it into n equal parts.

6.1.13. Proceeding from the geometric meaning of the definite
integral, prove that:

2n

(a) Ssm 2xdx=0; (b) Scos“xdx 0;
0
2

(c)S(?x-l—l)dx 6; (d) SI/Q xzdx—



256 Ch. VI. The Definite Integral

6.1.14. Passing to the limit from the integral sums, compute the
integral

4
1= xax,
1
by subdividing the interval [1, 4]:

(a) into equal parts;
(b) by points forming a geometric progression. In both cases

choose §; as:
(1) left-hand end-points of the subintervals;

(2) right-hand end-points of the subintervals;
(3) mid-points of the subintervals [x;, x;,,].

§ 6.2. Evaluating Definite Integrals by the
Newton-Leibniz Formula

The following is known as the Newton-Leibniz formula:

b
§ 1) de=F ()P =F ()—F (a),

where F(x) is one of the antiderjvatives of the function f(x), i.e.
Fri=Ffx) (@<x<b).

6.2.1. Evaluate the integral

V3
dx
1=S =
1

1+

Solution. Since the function F(x)=arctanx is one of the anti-
derivatives of the function f(x)=—l#, using the Newton-Leibniz
formula we get

V3
3 fad 14 n

_ dx . ]/'3_ ——‘— I .1
I= Sl—_i_x—z——arctanx[] =arctan}/ 3 arctanl == —7 =g,
1

6.2.2. Compute the integrals:

2
. . Cosx , . dx
(a) \ sin2xdx; (b) s dx; (c) OS

S| a

o|at— |y
w
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6.2.3. Given the function
v for 0<x<],

f(x)=1 Vx for 1<x<<2.
2

Evaluate g f (x) dx.
0

Solution. By the additivity property of the integral
2 1 2 l

Sf(x)dx— S f(x)dx—|—g f (x) dx—‘))cz dx—}—S V xdx=

0

1 3 2 _—
3 2 7 1 2 2 1 =
=3 +g57| =gt —g=guVI-.
0 1
6.2.4. Evaluate the integral
2
1={11—x|dx.
0

Solution. Since

[1—x for 0<x<1,
]x 1 for 1 <x<2,

we obtain, taking advantage of the additivity property of the integral,

[1—x[=

2 1

2
(1 1—xjax={(1—naxt+ § (x—1yde=
1

0 0
(I —x)* l ( 1)2 ’ 1 i
=——7 |t | =g tz=L
0
6.2.5. Evaluate the integral
b
| x|
I = dx,
§ 5
where a < b. )
Solution. If 0<la < b, then f(x)= ——'= , therefore Sf(x)dx:

a

=b—a. If a<b<CO0, then f(x)=—1 and \ f(x)dx=—b—(—a)=

ug/ge_

b

—a—b. Finally, if a<0<b, then divide the integral {f(x)dx
a
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into two integrals:
b

Sf(x)dx—Sf(x)dx+Sf(x dv="b—(—a).
The above three cases may be represented by a single formula:

Dl dx=1b|—]al.

RC—o

Note. When evaluating integrals with the aid of the Newton-Leib-
niz formula attention should be paid to the conditions of its legi-
timate use. This formula may be applied to compute the definite
integral of a function continuous on the interval [a, b] only when
the equality F’(x)={f(x) is fulfilled in the whole interval [a, b]
[F (x) is an antiderivative of the function f(x)]. In particular, the
antiderivative must be a function continuous on the whole interval
[a, b]. A discontinuous function used as an antiderivative will lead
to the wrong result.

6.2.6. Find a mistake in the following evaluation:
V3
V3
0

- arc tan —2x—2
—|—x2 2 X
0

=3 [3f€tan( —V 3)—arctan0] = -z

1 2 ! 1
where <—2-arc tan ]_xxz) == (x=~1).

Solution. The result is a priori wrong: the integral of a function
positive everywhere turns out to be negative. The mistake is due
to the fact that the function i2arc tanli—xxz has a discontinuity
of the first kind at the point x=1:

. 1 2x Fud 1 2x
lim sarctan—==7; lim Sarctan
x->1-0 l—x 4 x->|+02 I —x2

==
=7

The correct value of the integral under consideration is equal to
dx Vs _ — _n
ES Tz =are tanx , = arc tan)/ 3—arc tan 0 = T

Here the Newton-Leibniz formula is applicable, since the function
F (x) = arc tan x is continuous on the interval [0, %] and the equality

F’ (x)=f(x) is fulfilled on the whole interval.
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6.2.7. Find a mistake in the following evaluation of the integral:

) a
dx . dx .
1+2sin2x ) cos®x+3sintx

0 0

n dx

cos? x 1 S n
=S [+3tanizx V3 arc tan (J/ 3tanx) . =0.

(The integral of a function positive everywhere turns out to be
zero!)

Solution. The Newton-Leibniz formula is not applicable here,

since the antiderivative F(x) =—— arc tan () 3 tanx) has a discon-

Vs
tinuity at the point x=g—. Indeed,

lim F(x)= lim V_ arc tan () 3tanx) =

x»%_o ;H?-o

1 T
=T_—arctan(+oo)=2 V3’

lim F(x)= hm — arc tan (J/ 3tanx) =
n V
x->7+0 x> = 2

b4

2V'3°

V_ arc tan (—oo) =

The correct result can be obtained in the following way:

n

a
Scosz x+3sin%x S cot‘x—|—3 smzx
0 0

It can also be found with the aid of the function F(x)=
V_ ——arctan()/3tanx). For this purpose divide the interval of

integration [0, n] into two subintervals, [0, 7] and [7, n] , and
take into consideration the above-indicated limit values of the func-
tion F(x) as x——»—g-¢ 0. Then the antiderivative becomes a conti-
nuous function on each of the subintervals, and the Newton-Leibniz

9‘
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formula becomes applicable:

n

dx
Scosz x4 3 sinzx +
0

S T
NENsT]

1
i
2

— L _arctan () 3tanx) l‘——l——— arc tan ()3 tan x)

V'3
—v7 [(3=0)+(0=(=%))] =7

6.2.8. Compute the integral

A N
j ]/1+c2032x dx.

0

4 2
Solution. )/ 1_—1%5_2)5 = ]/Q—C—OES—-’£ =|cos x| =

Therefore

a -
S 1-F cos 2x dx

cosxdx-+ |\ (—cosx)dx=

O ol
N|:IL"‘::I

=sinx 2—}—(—smx) n—(l—o)-l- (0—(—1)=2.

Note. 1f we ignore the fact that cosx is negative in {_%, n]

and put
l/l—|—o:20s 2x — cosx,

we get the wrong result:

1
Scosxdx_smx =0.
0
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6.2.9. Evaluate the integral

100n

= S V' 1T—cos 2x dx.

0
Solution. We have

V1—cos2x=)2 |sinx|.

Since |sinx| has a period m, then

1000 100n

S V1—cos2xdx=)2 S | sin x| dx =
by 0

6.2.10. Evaluate the integrals:

-1
dx

@ =) sy

n
(c) I= g sin'z%dx;
-n

1
© 1 S f_ezx dx;
3
(l) 5 xdx ,
3 Vi+ri+ Viox+1
T
G 1= S }/ cos x— cos?® x dx;
vy
(k) 7 S l—|-x2)

7

= 100 I/Q_S sinxdx=200})"2.
0

d
b) 1= § =73
23
% 2
(d) 1=S %
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§ 6.3. Estimating an Integral.
The Definite Integral as a Function of Its Limits

LI f(x)<<o((x) for a<x<Cb, then
b b
(i< {o@dx

In particular,
b

S f (x)dx

a

b
< {17 dx.

b
2. mp—a) < { f () dx < M (b—a),

where m is the least value, and M the greatest value of the func-
tion f(x) on the interval [a, b] (estimation of an integral).
3. If the function f(x) is continuous on the interval [a, b], then
b
(fwde=f @ ®b—a), a<t<b
a
(mean-value theorem).
4. If the functions f(x) and ¢ (x) are continuous on [a, b], and
¢ (x), in addition, retains its sign on this interval, then

b b
(rewdi=f@ fowdy, a<e<b

(generalized mean-value theorem).
d d d d .
5. aff(f)dt=f(x); gx-Sf(t)dt=—f(x)at each point x of
continuity of the function f(x).

6.3.1. Estimate the following integrals:

3 T
(a) I=Sl/3—} x*dx; (b) I=S Smxdx;
' a

4

2

215
(c) I=S£{_—§dx.
by

Solution. (a) Since the function f(x)=} 3-+x® increases mono-
tonically on the interval [1, 3], then m=2, M=V30, b—a=2.
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Hence, the estimation of the integral has the form
3
o< (V3T Hdx<V/30-2,
1

3

4 < (V3T Fdx <2130 ~ 10.95.
1

(b) The integrand f(x)= sin x decreases on the interval [4 %] R
since its derivative

X cos x-—sm X (x—tan X) cos x
P ()= xl

< 0.
Hence, the least value of the function:

m=i(3) =5

its greatest value being

Therefore

A
3

" V3 T osi
022~ X gj
14
ry

6.3.2. Estimate the absolute value of the integral

19
sinx
I+ x8
o

Solution. Since |sinx|<C1, for x=>10 the inequality

sin x —a s
o < 1078 s fulfilled.

dx.

Therefore
19
1 nx

< (19—10) 1078 < 1072

10
(the true value of the integral ~—107%).
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6.3.3. Which of the two integrals
1

1
g V xdx, S x®dx
0 0
is the greater?
Solution. As is known, J/x > x* for 0 < x < 1. Therefore

1 1

S V xdx > S x3dx.

0 0
6.3.4. Prove the inequalities:

x7dx

e dx < e.

—_—

(a)0<\ <'§; (b) 1<

©

(=3

Solution. (a) Since 0 < w——=
then

< x" for 0 < x< 1,

?/1—}-)58
1

1
0<§—3—:‘i—"i—< S‘x7dx—~ =
o Vol 0

(b) Since for 0 < x <1 there exists the inequality 1 < e <e,
then

1

| —

0

| 1

1
de< Se"zdx< Sedx.
0 0 0

Hence the inequality under consideration holds true.

6.3.5. Prove the inequality

o
S —Rsmxdx< (l_e—R) (R>0)
0

Solution. Since the function f(x)=§i—n;’i decreases on (O, g) [see

Problem 6.3.1 (b)], then for 0<x< g
/ 2
Fo) = (3)==.

Hence, on this interval sin x > %x, therefore

2R
; -—x
e R sinx o 7




§ 6.3. Eslimating an Integral. Integral as a Funct. of Its Limits 265

and

% 2R - _IR ]2 .
e- Rsmxdx<§ dx:—QE [6 kS Jo == (1 —eR).

°t/:~|~;|

6.3.6. Prove that for any functions f (x) and g(x), integrable on
the interval (a, b), the Schwarz-Bunyakovsky inequality takes place:

v 5
ssy/ffwwdxggwwdn
Solution. Consider the function

F(x)=[f (x)—rg (0)]?,
where A is any real number. Since F (x) >0, then

b

{ [f (0 —2g(x))*dx >0,

a

b

(F g adx

a

or
b b b
A (g2 () dx—24 () g (x)dx+ (2 (x) dx >0,

The expression in the left side of the latter inequality is a quad-
ratic trinomial with respect to A. It follows from the inequality that
at any A this trinomial is non-negative. Hence, its discriminant is
non-positive, i. e.

b 2 b b
[{raad —] P oga g gac <o
a

a a
Hence

b
[Feg@a

a

) b
<]/ Sf‘* (x)dx ng () dx,

which completes the proof.

6.3.7. Estimate the integral from above
1

* sinx
I::S'mzdx.
0

Solution. By the generalized mean-value theorem we have
1

=sing(0<EL ),

0

1

sin x
Sl—]—x dx = smESH_ > =sin§arctanx
[
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Since the function sinx increases on the interval [0, 1] then
sin& < siin 1. Whence we get an upper estimate of the integral:

1

sin x .

S —|—x2 —sin | ~ 0.64.
0

It is possible to get a better estimation if we apply the same
theorem in the form

1 1

SITX gy = ! - Ssinxdxz

. —cos 1)< 1—cos 1 ~ 0.46.
x2 1 )
0 ! E []

1
T (1

6.3.8. Proceeding from geometric reasoning, prove that:
(a) if the function f(x) increases and has a concave graph in the
interval [a, 0], then

b
(b—a)f (@) < [ F(rdr < (p—a) AL

(b) if the function f(x) increases and has a convex graph in the
interval [a, b], then

b
(b—a)HATO < (o de < 0—a) ] ).

Solution. (a) Without limitation of generality we may assume
f (x) > 0. Concavity of the graph of a function means, in particu-
lar, that the curve lies below the chord
through the points A(a,f(a)) and
B (b, (b)) (see Fig. 61). Therefore the

f8) area of trapezoid aABb is greater than
that of the curvilinear trapezoid boun-
#(a) l ded above by the graph of the func-
: { tion, i. e.
0 a i
’ §F () dx < Sqam=(6—a)-LALLO,
Fig. 61 a

The inequality
b
(b—a)f(a) < Sf(x)dx

a
is obvious.

1
6.3.9. Estimate the integral SV]—]—x‘dx using

0
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(a) the mean-value theorem for a definite integral,
(b) the result of the preceding problem,

(c) the inequality ' T+x* < 1 —|—§,
(d) the Schwarz-Bunyakovsky inequality (see Problem 6.3.6).
Solution. (a) By the mean-value theorem

1
1=V Txidx =)/ TFE, where 0<<EL 1.
(1]

But
I<VTI+E<V2,
whence
1< I<V2~1.414.

_(b) The function f(x)=VTHx* is concave on the interval [0, 1],
since

" 2% (x4 4-3)
["(x)= W>O 0<x<1.

On the basis of the preceding problem we get

1 —
1 < SV1+'x'4dx< 'J“T’/—Qz 1.207.
0

©) 1<1=5V1—+7dx<5(1+"—;)dx=1+1—‘0=1.1.

(d) Put f(x) =V T+ 4, g(x) =1 and take advantage of the Schwarz-
Bunyakovsky inequality

1 1 1
=Sl/l—{—x4dx=1<]/5 1 -+ x%) dx- S =
0 0 [}
=}/1.2 ~ 1.095.

6.3.10. Find the derivative with respect to x of the following
functions:

1
gl/'l+x4dx
0

(@) F={Intdt (x>0)
(by F(x)= \ cos(t2)dt (x> 0).

1

X
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Solution. (a) Write the given integral in the following way:

F(x)=§lntdt+xglntdt=xglntdt—)glntdt,

where ¢ > 0 is an arbitrary constant.

Now let us find the derivative F’(x) using the rule for differen-
tialing a composite function and the theorem on the derivative of
an integral with respect to the upper limit:

Fi(x)= [S In tdt] (x“);—[g Int¢ dt] (x®)y=1nx*3x* —Inx*2x =

= (9x*—4x) In x.

X

(b) F(x)= S cos (¢2) dt +- Scos(t’) dt =

4

1
— S cos (12)dt + S cos (£?)dt;

c

1

F'(x):——h‘ cos (1) d } (7);+[V§ms(ﬂ)d1] V%), ==

1
=—C0S ; (—x_l) + cosx-

c

1—'-iCOSi-'— COs x
Yz e 2;/; '

6.3.11. Find the derivative with respect to x of the following
functions:
2X

(a) F(x)=SS—“;-’—dt; (b) F(x)=Sl/l+t4dt.

0

X
6.3.12. Find the points of extremum of the function F (x) =S‘°i:l!dt

in the domain x > 0. *

Solution. Find the derivative

F'(x).—_[SSi—‘}‘dt] LS

0
The critical points are:

x=nn (n=1,2, ...), where sinx=0.
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Find the second derivative at these points:
F (%) =xcosxx:sinx;

F" (nn) = % cos (nm) = nLn (—1)"==0.

Since the second derivative is non-zero at the points x=nn
(n=1, 2, ...), these points are points of extremum of the function,
namely: maxima if n is odd, and minima if n is even.

6.3.13. Find the derivative of y, with respect to x, of the func-
tion represented parametrically:
& 3
= S v/ zlnzdz; y= S 22Inzdz.
1 23
!/t
X[ )

Solution. As is known, y,=

Find x; and y;:

t:‘
<S,/z1n zdz> () =tInt*-32 = 9¢ Int;
(¢ '
y}-—-\g zzlnzdz> (l/t),——t]nl/t——: ——li—l/—tlnt;
VT Vi t
whence

=362 T (> 0).
—— Vilnt
4
6.3.14. Find the limits:
X X
S sin V'x dx S (arc tan x)2 dx

. . N
@ Jim*™—m— ) fIm s

o)

X
S 2% dx
0

(c) lim

X+ ®

x!

Solution. (a) At x==0 the integral gsin V xdx equals zero; it is

0
easy to check the fulfilment of the remaining conditions that ensure
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the legitimacy of using the L’Hospital rule. Therefore

x? x? ’

S sin V'x dx [g sin ¥ xdx] (%)«
. . . 2xsinx 2
lim & = [im &2 A -
- ) 3¢ e =3

(¢) We have an indeterminate form of the type % Use the

L’Hospital rule:

/x 2 X
g ex* dx> 2 S ex* dy-ex?
X+ © x>+ ® e=*
gezxzdx
0
x
QSexzdx
. . e"2
= lim —° = lim 2 —4—=0.
X+ > ex X+ er.2x

6.3.15. Find the derivative Z—z of the following implicit functions:

e~ dt + S sin? tdt =0;
0

y
;
y
(by ( eldt+ ( sin¢dt =0;
oge Ssm
)
5

(=1

Yy
V'3—2sin?zdz+ S costdt =0.
0

(©

Solution. (a) Differentiate the left side of the equation with
respect to x, putting y =y (x):

y ’ x2 ’
[Se"zdt] .%+[Ssin2tdt] (x2), =0;
Yy

0 0 x2
_,2dy L .
ey d—x+sm2x2'2x_0.
Hence, solving the equation with respect to %, we get

d —2xe*¥ sin? x2.
dx
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(c) Differentiate the left side of the equation with respect to x,
putting y=y (x):

X ’ y ’
[SVS—? sin®z dz} —|—l:5 costdt]yj—i:O.
0

4

2

Whence

T dy dy V3 —2sintx
2 . -
1/3—2sin x+tcosy =0, == — sy

6.3.16. Find: (a) the points of extremum and the points of
inflection on the graph of the function

S(t—l)(t— )2dt;

0

(b) curvature of the line defined by the parametric equations:

( X = al/nScos dt,
-

aV'n j sin 5‘—;— dt
0
(the Cornu spiral).

Solution. (a) The function is defined and continuously differen-
tiable throughout the entire number scale. Its derivative

ly=(x—1)(x—2)

equals zero at the points x, =1, x, =2, and when passing through
the point x, it changes sign from minus to plus, whereas in the
neighbourhood of the point x, the sign remains unchanged. Conse-
quently, there is a minimum at the point x, =1, and there is no
extremum at the point x, =2.

The second derivative

r=3x2—10x48

vanishes at the points x, = 3 , ¥,=2 and changes sign when pas-

sing through these points. Hence, these points are the abscissas cf
the points of inflection.

(b) We have
tZ

, — nif? , — . m
Xy=al meos 5, yt-—-al/nsm-2—-,
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hence,
.y L (gt Ve
yx_—"x_':tan—g_" Yxx= P NG TER
t t a cos® 5
whence the curvature
K= ly"| _ VEt
= =

41"
6.3.17. Prove that the function L(x), defined in the interval
(0, o) by the integral
Xdl
L=,
1

is an inverse of the function e*.

Solution. Let us take the derivative

L' (x) =% (x > 0).

Since the derivative is positive, the function y-=L(x) increases
and, hence, has an inverse function

x=L"1(y).
The derivative of this inverse function is equal to

dx 1

Iy~ L ©
whence it follows (see Problem 3.1.10) that

x=Ce.
To find C, substitute x =1. Since
L(1)=0, i.e yl,.,=0,

then
1=Ce"=C,

which proves our assertion:
x=L"1(y) =e’.
6.3.18. Given the graph of the function y =f(x) (Fig. 62), find
the shape of the graph of the antiderivative /= §f(t)dt.
0

Solution. On the interval [0, a] the given function is posi-
tive; consequently, the antiderivative increases. On the interval
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[0, %] the derivative of the given function is positive; hence, the

curve [ =/ (x) is concave. On the interval [%, a] the derivative

of the given function is negative; consequently, the curve /=1 (x)
is convex, the point x:% being a point of inflection. The inter-
val [a, 2a] is considered in a similar way. The point x,=0 is a
point of minimum, since the derivative /' (x)=f(x) changes its
sign from minus to plus; the point x,=a is a point of maximum,
since the sign of the derivative changes from plus to minus.

=~
1S]
ol
SN
3]
E |
g

0 s L
/I 2 2 [0 2 o 3 2

2 2

Fig. 62 Fig. 63

The antiderivative /(x} is a periodic function with period 2a,
since the areas lying above and below the x-axis are mutually
cancelled over intervals of length 2a. Taking all this into account,
we can sketch the graph of the antiderivative (see Fig. 63).

6.3.19. Find the polynomial P (x) of the least degree that has
a maximum equal to 6 at x=1, and a minimum equal to 2 at
x=3.

Solution. The polynomial is an everywhere-differentiable function.
Therefore, the points of extremum can only be roots of the deriva-
tive. Furthermore, the derivative of a polynomial is a polynomial.
The polynomial of the least degree with roots x;,=1 and x,=3
has the form a(x—1)(x—3). Hence,

P(x)=a(x—1)(x—3)=a(x*—4x -1 3).
Since at the point x==1 there must be P (l)=6, we have

P(x)= §P’ (x)dx -6 =a §(x2——4x-{—3)dx—|-6=

1 1
—a (’;—3—2x2+3x— 1 -;-) 6.

The coefficient a is determined from the condition P (3) =2, whence
a=3. Hence,

Px)y=x*—6x*+9x- 2.
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6.3.20. Find the polynomial P (x) of the least degree whose graph
has three points of inflection: (—1, —1), (1, 1) and a point with
abscissa 0 at which the curve is inclined to the axis of abscissas
at an angle of 60°.

Solution. Since the required function is a polynomial, the abscis-
sas of the points of inflection can only be among the roots of the
second derivative. The polynomial of the least degree with roots
—1, 0, | has the form ax (x*—1). Consequently,

P’ (x) =a (x®*—x).

Since at the point x=0 the derivative P’ (0)=tan 60°=)3, we
have

P = Prwar+V3=a(—5)+V3.
0
Then, since P(l)=1, we get

=SP'(x)dx+1=a(’-2%—’-‘§+§)> V3 x—=1)+1.
1

The coefficient a is determined from the last remaining condition

60(1/37—1)

P(—1)=—1, whence a= . Hence,

P(x)= VS L(3x®—10x%) +-x /3.

6.3.21. Taking advantage of the mean-value theorem for the
definite integral, prove that

(a) 3< \Vq+xdx <10,

]//1 +%sin2xdx<% ‘/%,

°L/".m[: o

b) F<

2
© i3 <SlO—|—3cosx< 7"

6.3.22. Using the Schwarz-Bunyakovsky inequality, prove that

i —
Sl/l +x3dx<—Vz—5—. Make sure that the application of the mean-

0
value theorem yields a rougher estimate.
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6.3.23. Find the derivatives of the following functions:
~ =

(a) F(x)=5]ntdt(x>0); (b) Fn=%.
! 2

x

6.3.24. Find the derivative % of functions represented paramet-

rically:

o

sin ¢ Vi
> sin 22 d

(b) x= Sarcsinzdz, y:S

c? n

6.3.25. Find the points of extremum of the following functions:

12

(a) Fx)= Se—T(l—tz)dt;

(b) F(x)=St—2;5—ti"—4dt
0

§ 6.4. Changing the Variable in a Definite Integral

If a function x= ¢ (¢) satisfies the following conditions:

(1) @(t) is a continuous single-valued function defined in [, B]
and has in this interval a continuous derivative ¢’ (¢);

(2) with ¢ varying on [a, B] the values of the function x=¢ (¢)
do not leave the limits of [a, b];

(3) g(@)=a and ¢ (8)=b, o
then the formula for changing the variable (or substitution) in the
definite integral is valid for any function f(x) which is continuous
on the interval [a, b]:

b B
frmac=ilo] ¢ @) ar.

Instead of the substitution x=¢ (!) the inverse substitution
t=1(x) is frequently used. In this case the limits of integration
o and P are determined directly from the equalities @ =1 (a) and
B=1(b). In practice, the substitution is usually performed with
the aid of monotonic, continuously differentiable functions. The
change in the limits of integration is conveniently expressed in
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276
the tabular form:
x I ¢
ala
b|p
Vs
6.4.1. Compute the integral S V4—x dx.
-V3
Solution. Make the substitution x=2sinf, assuming that
-%gtgi;—. The function x=¢({)=2sin¢ on the interval

Ir—%, —g—] satisfies all the conditions of the theorem on changing
the variable in a definite integral, since it is continuously differen-

tiable, monotonic and
W(=3)=-V3 o(3)-vs

And so,

x=2sint; dx=2costdt, l/4—x2=2]cost|=2cost,

since cost > 0 on the interval [—%, %—]

Thus,
Vs '%" %
g Va4—x2dx=4 S costtdt =2 S (14 cos2¢)dt =
Vs L L
3 3

—2 [t+§sin2t]_?_n_=i3’_‘+1/§.
3

4
6.4.2. Compute the integral S\ I f:‘_‘ldx.
2

Solution. Make the substitution

x=2sect; x|t
_oSint . 12]0
dx_2cosztdt’ a
4l 3

On the interval [O, %] the function 2 sec ¢ is monotonic, there-

fore the substitufion is valid.



§ 6.4. Changing the Variable in a Definite Integral 277

Hence,
n
4 V______ 3 V'———
—1 _S Isec?{—4 o sint .,
x° d *0 16sectf cosztdt_
n
5 -
.__1 ' 2 __l_ 3 —_ 3
= sin® ¢ cos ¢ dt 12smt =55 -

<

6.4.3. Compute the integrals:

13

 dx: dx
5 0§ i

°L/j§

6.4.4. Compute the integrals:

cos x dx

n
3
@) 6—5 sin x4 sin? x S 2—|—cosx’
0

°c-,.>w|’.i

Solution. (a) Apply the substitution

sinx=t¢; x |t
cosx dx =dt; 01]o0
n .

Iz]!

The inverse function x=arcsint ngg%forogtg 1) satisfies
all conditions of the theorem on changing the variable. Hence,

1
cos xdx dt =1 t—3

= b—5sinxLsintr 6—5t—|—t2_nt——20
0

4
—11’1“3—‘

e T

(b) Make the substitution ¢=tan%

2dt X ,t
x=2arctant, dx= =,
1422 0lo
1 ’
5 1

which is valid due to monotonicity of the function tan % on the
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= arc tan —— o2 arctan—l——arctanO ==
V3 V3l V3 < V3 ) 3V
6.4.5. Compute the integral
14
& d
X
S a® cos? x+ b2 sin? x (@>0, b>0).
0
Solution. Make the substitution
tanx =¢, x |t
x4 010
cos? x ’ .
LA
4
Hence,
14
T 1 1
dx _S dt _lS dt
§a2c052x+b2sin2x _o a‘z—[—bzt'z—bzo Z_Z‘HZ-
L Larctan®|! = Larctan?
5 arcta , —aparctan—.

If a=b=1, then Ell-)arctan—g- =arctanl = 4 , which exactly coin-

cides with the result of the substitution a=b=1 into the initial
integral

s
4
dx = ( dx — T
a?cos2 x4 b%sin®x T4
0

:'Q/'D.sl;:l

6.4.6, Compute the integrals:

Vy V— 4
14+x2 , . X .
(a) dx’ b) 5x V‘m’
Y/ (x—2)?
© §3+ l/(x 2)2 dx
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a
X Ssin x

6.4.7. Compute the integral 1=S———l CrosE
0

Solution. Reduce this integral to the sum of two integrals:

n
xsin x d‘}'S x sin x dx:11+la-

1 4 cos?x 14 cos? x

[:

SC—2w|a

To the integral

n
x sinx
12:5 1+ cosZx
1
2
apply the substitution
x=n—t, x |
dx=—dt, I 11
Pl 2
bt 0
Then
11

)
(n—{)sint

(n—1) sin (n—1?) .
S T+ cos? (m—1) dt = S 1+ cos? ¢ -
0

T
2
n
int - tsint
sin sin
1—|—cosztdt_ 1+cosztdt°
0

=7

S|

n

2
sintdl  ( Isintdl
1+ cos?¢ 14cos?t *
0

Hence

xsin x dx

1+ cos?x +

1

°Q/7w|';l
°L’5w|:l

=1, 41,=

Since the first and the third integrals differ only in the notation
of the variable of integration, we have

I=n sin 7 d!
- 1 +cos?t *
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To this integral apply the substitution

u=cost, t u

du=—sintdt, 0 1
T ’

5 0

I=—n

u? anghfuz ZT'

_‘L/'Jo

Note. The indefinite integral (lisclgsi dx is not expressed in

elementary functions. But the given definite integral, as we have
shown, can be computed with the aid of an artificial method.

6.4.8. Evaluate the integral

1
jo ooy,

0

Solution. Make the substitution

x=tant, x | ¢
__at 0 0
" cos? !’ | n
&

Hence,

&l';l

:S In (1 +tan/)sec? ¢ dt — 1n(1-|—tant)df

sec? ¢

°L,~,‘,Iv;,

Transform the sum 14tant:

. n
B B2 B V 2sin (l—]-T>
l +-tan¢ =tan 3 +tant= ————F——.

cos !
Substituting into the integral, we obtain
T " :
1-.-;Si21n2dt+§1nsm<t+%)dt—glncoszdr-.:
[0 (:w ;[,
2
—tln? Insin( ¢+ 5 |df — \ Incos{dt =
e[+ finsin (1) e
f T
B B
=%ln2 —}—5 Insin (t —k%) dt—) In costdt;%ln2+ll— I,
0 0
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Now let us show that [7,=1,. To this end apply the substitution
l

t:—}—z, |

dt =—de,

¢
0
n
4

z

=
4
0

Tt

4
to the integral 12:Slncostdt.
0

Then

44

12=—§lncos (%—z)dz: §lnsin l%—(%—z)] dz =
T 0

4

Therefore
19

Note that in this problem, as well as in the preceding one, the
indefinite integral Slnl(_lk—;x)
ctions.

dx is not expressed in elementary fun-

6.4.9. Prove that for any given integral with finite limits a and 6
one can always choose the linear substitution x=pt+4q (p, g con-
stants) so as to transform this integral into a new one with limits
0 and 1.

Solution. We notice that t{he substitution x=pf-+4q satisfies
explicitly the conditions of the theorem on changing the variable.
Since ¢ must equal zero at x=a and ¢ must equal unity at x=b
we have for p and ¢ the following system of equations

a=p-0+4gq,
b=p‘l+q'
whence p=b—a, g=a. Hence,

b 1

(fwdr=p—a) {F[(0—a)t+a]dt.

a 0
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6.4.10. Compute the sum of two integrals

e (”'%>2dx.

-5

S e(x+5)2 dx_|_ 3

-4

wl—mwi

Solution. Let us transform each of the given integrals into an
integral with limits O and 1 (see the preceding problem).

To this end apply the substitution x=—¢—4 to the first inte-
gral. Then dx=—dt and

-5 1 I
l,= Se‘“s’)’ dx = — Se“t“)’dt =— Se“'“2 dt.
-4 0 0

Apply the substitution xz%’[—% to the second integral. Then

dt
=3 and

-

0

~
»
Il
w
]~ |
(13
©
—
*
i
|
~
-
Qu

Hence

1

L1, =—Sew-v gt 4 (eu-nrar —o.
0 0

. 2N
Note that neither of the integrals Se(”W dx and Seg (x 3> dx is
evaluated separately in elementary functions.

6.4.11. Prove that the integral

T(

ﬂ’ sin 2kx
J sinx
0

equals zero if k is an integer.
Solution. Make the substitution

=
~

x=mn—I1,
dx = —dt,

a o
o A

Then at %k an integral number we get:

§ sin ‘ka i 5‘ sin 2k (m—1{) dt — S‘ sin 2kt dt
0 0

sin x sin (w—¢) sint
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Since the definite integral does not depend on notation of the vari-
able of integration, we have

I =—1, whence [ =0.

6.4.12. Compute the integral

<
wl

dx

I/I-—-xz '

w]_‘,wml

Solution. Apply the substitution x=sint (the given function is
not monotonic), dx=cos¢dt. The new limits of integration ¢, and
¢, are found from the equa-

V3

2

tions L=sin t; =sin ¢.

2

7 A

We may put t, =+ and ¢,= 21 ——————————

=%, but other values may AVZER
also be chosen, for instance, 0l & = 7 oz =\ ¢
tl=5—JT and ¢,= 6 3 3 b

In both cases the variable Fig. 64
x=sint runs throughout the
entire interval[%, 12—3—} (see Fig. 64), the function sin# being

monotonic both on [%, %] and [2n 5n]

36
Let us show that the results of the two integrations will coincide.
Indeed,

3 il a
2 3 3 P
g’ dx _S‘ cos ¢ df s.—i{-——ln tanL 5
xVIi—x sinfcos? ) sin 2 ||
1 T fu g
) 6 6
=IntanZ—Intan X = In 2+l_/3.
6 12 V3

On the other hand, taking into consideration that cost? is negative

on the interval [%, %J , we obtain
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V73 2n 5n
2 3 6
s' dx _S‘ cosfdt  ( dt
xV1—=x* ) sint(—cos?) sin ¢
1 5m 2n
3 3 3
5
51 2 -
t\ e tan 3@ 2+ V'3
=In|tan5||,;=In — =1 — .
3 tan§ V3

Note. Do not take tl=%n, t2=%, since, with ¢ varying on

the interval [i;— , %] , the values of the function x =sin{ lie beyond
the limits of the interval [% i;’l]

6.4.13. Prove that the function L (x) defined on the interval

(0, o) by the integral L (x)= S # possesses the following properties:
1
L (x,x,) =L (x;) + L (x,),

L (%) =L (x,)— L (x,).
Solution. By the additivity property

ra tar | P
C dt
L(x1x2)=3 t_=ST+ 5 T
1 x

I

Let us change the variable in the second integral

t | 2

t=x.2,
dt =x,dz, X :
xlx2 x2

Then

Car | Ga
L) =T+ | F=L0a)+L(x).
1 1
Putting here x.x,=x;; x2=%3]-, we obtain

Lxy)=L(x)+L (;‘f) Qe L (’;—j) =L (x)—L(x).
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m
It is also easy to obtain the other corollary L<x7> =—','zl L(x) for

any integral m and n.
Indeed, for positive m and n this follows from the relations

L(67) e (67) L= (7).

and for a negative exponent, from
L(1)=0, L(x“)=l.<%>=L(1)—-L(x)=—L(x).

Now, taking advantage of the continuity of the integral as a fun-

ction of the upper limit, we get the general property L (x?®)=al (x).

Note. As is known, L(x)=Inx. Here we have obtained the prin-

cipal properties of the logarithm proceeding only from its determi-
nation with the aid of the integral.
3

6.4.14. Transform the integral S(x—?)'zdx by the substitution
0
(x—2)*==t.

Solution. A formal application of the substitution throughout the
interval [0, 3] would lead to the wrong res_ult, since the inverse
function x=¢(¢) is double-valued: x=2i_l/ ¢, i.e. the function x
has two branches: x,=2—f; x, =2V . The former branch can-
not attain values x > 2, the latter values x << 2. To obtain a cor-

rect result we have to break up the given integral in the following
way:

3 2 3
S (x—2)2dx = S (x— 2)*dx+ S (x—2)?dx,
0 0 5

and to put x=2—)"7 in the first integral, and x=2-}"7 in the
second. Then we get

2 0 4
’ dt 1 T 8
Ilzj(x—Q)ldxz— gt;—_[:;jl/tdt:?,
0 4 0
: - dt 1 l 1
h={—par={t = (Vid=g
2 0 0

Hence, /=

w]| o
+
| —
I
‘CO
£
=
IS
=
o
N
)
o
-
-
o
!
-
-
)
w
o
=
P
-
o
0
=
o
)
I
o
@,
<
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verified by directly computing the initial integral:

3
: =2 1 8
Y e—2prdr =" L*‘s‘ﬁ‘—?’

f=1

6.4.15. Compute the integrals:
5

1
dx .
@ I'= S 1+V 7c { 1/3x+|’
L
3 1
X . —(vVor—= 4y
© I= Sm (d)I—SVQX—x dx;
o 0
4
I
Csinxy
sin x COoSs X
() 12(5 3+ sin2x ’
) I=jx2 ]/Z—I;dx, a>0;
0

1
(2) I—Sl/an —x2dx; (h) [ =l§(+x)z.

6.4.16. Applying a suitable change of the variable, find the fol-
lowing definite integrals:

2 a

dx X dx
@ '5 Vifl+Vietie' ®) b§x+ a?—x?

Via® +0b2)/2

28‘ . xdx
O)erm @ ) vVemae—s
V(3az+b%)/2

2
6.4.17. Consider the integral S% It is easy to conclude
—2

that it is equal to §. Indeed,
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On the other hand, making the substitution x-=—t]—, we have

X 1
dx:_%’ 9 1 ’
I )
1
2 7
1 1
2 2 Pl l 1
dt dt o 1
S = S —4+——— g4f2+1 — arc tan 2¢ =7
= 12 “1 I o

wl=
v

This result is obviously wrong, since the mtegrand + T 0, and,
consequently, the definite mtegral of this function cannot be equal

to a negative number -7 . Find the mistake.
2
6.4.18. Consider the integral /= { —2% . Making the substi-
—<COS X

0

tution tan —’2‘—=t we have

21

S dx . 24t —0
5——2cosx_S ) T—2\ "~
(1+#2)(5—2-—2
b 5 ( H—t“>
The result is obviously wrong, since the integrand is positive,
and, consequently, the integral of this function cannot be equal to
zero. Find the mistake.

2
6.4.19. Make sure that a formal change of the variable {=x*
2

leads to the wrong result in the integral S /x*dx. Find the

mistake and explain it.
6.4.20. Is it possible to make the substitution x=sect¢ in the
1

integral / = S V2 + 1 dx?
0

1
6.4.21. Given the integral Sl/l—xzdx. Make the substitution

0
x=sint. Is it possible to take the numbers n and —g as the limits
for ¢?
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6.4.22. Prove the equality

a

§ Feode=1F ) +F(—x0)]dx

-a 0

for any continuous function f(x).
2n

6.4.23. Transiorm the definite integral { f (x)cosxdx by the sub-
0

stitution sinx =t¢.

§ 6.5. Simplification of Integrals Based on the
Properties of Symmetry of Integrands
1. If the function f(x) is even on [—a, a], then
( Foode=2f)d
-a 0
2. If the function f(x) is odd on [—a, a], then

S f (x)dx—=0.
3. If the function f(x) is periodic with period T, then
b b+nT

(ryde= § fodr,

a a+nT

where n is an integer.
1

6.5.1. Compute the integral S | x|dx.
=1
Solution. Since the integrand f(x)=|x| is an even function, we

have
1 1 1

S | x|dx=2 S |x|dx=2 Sxdx:x2
g 0 0
6.5.2. Compute the integral

7

x4sinx
g T2 dx.

1

b =1

Solution. Since the integrand is odd, we conclude at once that
the integral equals zero.
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6.5.3. Evaluate the integrais
J

(a) X f (x) cos nx dx;

(b) Sf(x) sin nxdx,
if: (1) f(x) is an even function; (2) f(x) is an odd function.

5
. x° sin? x
6.5.4. Calculate the integral \ ——5—dx.
;S;x +2x%+

5a
4

sin 2x
cos? xsind x

6.5.5. Compute the integral S

g
Solution. The integrand is a periodic function with period m, since

_ sin 2 (x 4-) o sin 2x .
Flor+n) = cost (x+m)fsind(x+m) cos? x-Fsin® x—f (x)-

Therefore it is possible to subtract the number n from the upper
and lower limits:

5 41 he
T T T
sin 2x dx _S’ sin2xdx S‘ tan x dx
cost x+sintx ) costx-sintx cos? x (1 +tantx) *
fid 0 0
Make the substitution
X 14
=tanx, 0 0
_dx n ’
coszx’ vy |
44
T 1 )
tan x dx _(2ta —arctan?| =%
2 g cos%c(l-i—tarrix)——0 [T retanitj, =
0
6.5.6. Prove the equality
a a
g cos xf (x?)dx ==2 g cos xf (x?) dx.
-a 0

Solution. 1t is sufficient to show that the integrand is even:
cos (—x) f [(—x)?] = cos xf (x?).
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6.5.7. Compute the integral
Vs
? 2x7 4 3x8 — 1045 —7x3 — 1242 - x4 1

%242 dx.

V3
Solutton

dx =

2x7 +3x8 — 10x5 —7x3— 12x2 -+ x|
X242
V2

V2 V2
2x7 — 10x5—7x3 - x 3x2 (x4 —4)+1 _
= S T2 dx—l— S Poa) -dx =
-V2 -V2

V2 |
=042 ES [3(x4—2x2)+?:_—1] dx =

2 x V2_ 164,35
—|—V_arctan]—/—_- = V 21/9 .
In calculating we expanded the given integral into the sum of
two integrals so as to obtain an odd integrand in the first integral
and an even integrand in the second.

—4x®

0o

6.5.8. Compute the integral

Solution. The function f(x)=cosx is even. Let us prove that the
function ¢ (x) =In +;‘ is odd:

=In (l—l—x) ln—+———-q>(x)

1—x

cp(—x):ln
Thus, the mtegrand is the product of an even function by an odd
one, i.e. an odd function, therefore

1
T

cos x In I+xdx 0.
_2'

6.5.9. Prove the validity of the following equalities:
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1
2 P
x®sin® xdx=0; (b) X e°°5"dx=2g ecos* dx;
0

(a)

1

2

[}
—a mla‘/’mla

(¢) \ sinmxcosnxdx=0 (m and n natural numbers);

-

(d) S sin xf (cos x) dx =0.

6.5.10. Prove the equality

b b
Sf(x)dx=gf(a+b——x)dx.

Solution. In the right-hand integral make the substitution

X | t
x:a—l_b_tv dx: —dt’ a b
b a
Then we obtain
b a b b
(Fa+o—xyde=—=(rwydar=(rayar=fwanr.
a b a a

Note. The relation established between the integrals can be explai-
ned geometrically.

The graph of the function f(x), considered on the interval [a, b],
is symmetrical to that of the function f(a-+b—x), considered on
the same interval, about the straight line x=3"2'_—b. Indeed, if the
point A lies on the x-axis and has the abscissa x, then the point A’,
which is symmetrical to it about the indicated straight line, has
the abscissa x" =a--b—x. Therefore, f(a+b—x")=f[a+b— (a+
+b—x)] =f (x). But symmetrical figures have equal areas which are
expressed by definite integrals. And so, the proved equality is an
equality of areas of two symmetrical curvilinear trapezoids.

6.5.11. Prove the equality
7 1

OSf(x)g(t—x)dx=0$g<x>f(t—x)dx-



292 Ch. V1. The Definite Integral

Solution. Apply the substitution f—x==z in the right-hand integral;

then we have
0 t

—§g<t—z)f(z>dz=Sf(z)g(t—z)dz.
0

ks
2
6.5.12. Prove the equality sin”’xdx=g cos™ x dx and apply the

Se— "’l:

obtained result in computing the following integrals:

F49 T

2 2
S cos? x dx and S sin? x dx.

Solution. On the basis of Problem 6.5.10 we have

cos™ x dx.

°L/1 N,I-;g

I T
2 2
S sin”’xdx=g sin™ (— )dx
b 6
Hence, in particular,
n n
P 3
I= S sin? x dx = S cos? x dx;
0 0
add these integrals:

2] = dx =

.
’

SE

(sin? x4 cos? x) dx =

°L/3wl';]
CC/)N,I:

hence, /= %

6.5.13. Prove the equality

f (sin x) dx.

ST .ol a

§ f(sinx)dx=2

0

Solution. Since

§f (sin x)dx =
0

f(sinx)dx+\ f(sinx)dx,

QMMI:\

NEEmt
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it is sufficient to prove that

n T

S f (sin x) dx=g f (sin x) dx.
n 0

7

In the left integral make the substitution

X | t
X=n—I1, . n
dx= —dt, 5 5
b4 0

Then

S f(sinx)dx=—)\ f[sin(n—1¢)] dt =
T

vla—o

f (sinx) dx.

°</1MI;|

T
=Sf(sir1t)dt=
0

6.5.14. Prove the equality
n

a
Sxf(sinx)dx=%Sf(smx) dx
0 0
Solution. In the left integral make the substitution
X t
x=mn—It,
dx=—dt, 0 n
4 0

Then we obtain
0

Sx[ (sinx)dx=— S (n—1)f [sin (n—¢)]dt =
0

Tt

= ( af sintyat — { tf sint)at.
0 0

Whence

n n

2 S xf(sinx)dx=n S f (sin x) dx,
0 0

which is equivalent to the given equality.
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6.5.15. Using the equality

sin (n-i——;-)x |
———x——=7—|-cosx—|—c052x—|— ...+cosnx,
2sin —
2
prove that
n sm(n—{—-;-)x
dx = m.
sin-x-
0 2

6.5.16. Prove that if (p(x)=-;—a0—|—a1 cos x+ b, sin x+4-a, cos 2x+-

4b,sin2x+ ... +a,cosnx+b,sinnx, then
2n 21

(a) S @ (x)dx=ma,; (b) S @ (x) cos kx dx = ma,,;
0 0
2n

(©) S ¢ (x)sinkxdx=ab, (k=1,2, ..., n).

0

8§ 6.6. Integration by Parts. Reduction Formulas

If u and v are functions of x and have continuous derivatives,

then , ,
S u(x)v' (x)dx=u(x)v(x) \:—S v(x)u' (x)dx

a

or, more briefly,
b , !
' Sudv=uv a—g vdu.
a

a

I
6.6.1. Compute the integral Sxe"dx.
0
Solution. Let us put
x=u, e* dx = dv;
du = dx; v=e¢*,
which is quite legitimate, since the functions u=x and v=e* are
continuous and have continuous derivatives on the interval [0, 1].
Using the formula for integration by parts, we obtain
1 1

1 |
§xe"dx=xe" O—Se"dx=e——e" 0o =1
0
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6.6.2. Compute the integral /= \ e®*sinbxdx.

°e/->g.|;1

Solution. Let us put
u=sinbx, dv=e**dx;

du="bcosbx dx, v=%e“".

Since the functions u=sinbx, v=-‘l;e"" together with their deri-

vatives are continuous on the interval [0, m], the formula for in-
tegration by parts is applicable:

n
3
1 ki3 b
=—e""smbx —7 e**cosbxdx =
0

%% cosbxdy = — 2 I;.
a

I
|
QQ/jq-l:l

Now let us integrate by parts the integral /,. Put

u=cosbx, dv=e**dx,
du= —bsinbxdx, v=%e‘”‘.
Then
! 11
b/l b—b— )
I=——a\ e‘”‘cosbx ;Se‘“‘smbxdx
0 /
(‘ﬂ
b 1 b2 b\e? 1) b2
—z< ) =2 — Gl
Hence
an an
LN (" ) [— <e”+1>
_W'

In particular, at a=b=1 we get

11
Se%inxdx:—é—(eﬂ—l—l).
0
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6.6.3. Compute the integral Sln“xdx.
1

T
6.6.4. Compute the integral Ssin V x dx.
0

Solution. First make the substitution

V=t x t
x =12 0 0
dx =2t dt, n2 n
T 2
Whence
e o
4 2
S sin l/x_dx=25 {sintdt.
0 0
Integrate by parts the latter integral.
Put
t=u, sin ¢ dt =dv;
du=dt; U= —cCoS?.

Then
n I
2 2
2gtsmtdt {—tcost‘ Scostdt}_2smt|2—2.
0 0

1
. " arc sin x
6.6.5. Compute the integral I=\ dx.
1
) Vitx

x?sin x dx.

OV""I:‘

6.6.6. Compute the integral

a

6.6.7. Compute the integral 1,,=S(a2—x2)"dx, where n is a na-
0
tural number.

Solution. The integral can be computed by expanding the integrand
(@*—x?)" according to the formula of the Newton binomial, but it
involves cumbersome calculations. It is simpler to deduce a formula
for reducing the integral [/, to the integral I,_,. To this end let
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us expand the integral /, in the following way:
a a
l,= S (@ —x>)""Y (@ —x?)dx=a?l,_,— S x(@—x)""1xdx
0 0
and integrate the latter integral by parts:
u=x; (A®—x*)""1xdx=do,

du=dx; v= —;—n (@>—x*)" (ns=0).

We obtain
a
L=l +gx@—2y | =g (@ —wrdi—al, ,— 5 1,
0 0
Whence
I,= 22,,2—3_] n-1
This formula is valid at any real n other than 0 and ——%.
In particular, at natural n, taking into account that
a
l,= S dx ==a,
we get ’
[, =a" (2?:”4521’;;53)_(21’;(_2:)_3)64523 =at (2512:?!1!)!! '
where

2n)!1 =2-4.6 ... (2n),
@n+ D =1.3-5... 2n+1).

6.6.8. Using the result of the preceding problem obtain the fol-
lowing formula:

C[ll 2 c? u C,r‘z . (2n)!!
1—-T+—5"—'—7"-—|—-. -+ (=1) 2n+1"" @n+DN°

where C% are binomial coefficients.

Solution. Consider the integral

1
B n . (2n)!!
l,,—§(l—x2) dX—m.
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Expanding the integrand by the formula of the Newton binomial
and integrating within the limits from 0 to 1, we get:

1
= S(l—x2)"dx—

(1 —=Clx*+Coxt— C3xt 4 ... +(—1)"Cix®") dx =

Cix® | Cax®  Cpx 1yn x2n+t |1

(— _
X——F3—+—5 R M ey =

0

_ Cn C3 (—1)n
‘__+5 Tt Ty

which completes the proof.

6.6.9. Compute the integral

H,=\ sin"xdx=) cos"xdx

omwlg
OL/"MI';I

(m a natural number).
Solution. The substitution
sinx=t¢,
cosx dx=dt,

ola of %
[}

reduces the second integral to the integral

m-1 ! m—1

kg
2
H,= S (1—sin?x) @ cosxdx_g(l—tz)Tdt,
0
considered in Problem 6.6.7 with a==1 and n=mT_l. Therefore,
the reduction formula
Ho=""LH, , (m#0, mo1)
is valid here, since
m—1
Homlp e Ty —m=ly m—ly
ey
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Iftm is an odd number, the obtained reduction formula reduces
H, to

kL
2

H1=S cosxdx=1,
0

therefore

_ (m—1n
H,= mll

If m is an even number then the reduction formula transforms
H, into

therefore
H m=

6.6.10. Compute the integral

n
1=stinmxdx
0

(m a natural number).

Solution. Taking advantage of the results of Problems 6.5.14 and
6.5.13, we get

KAl
n 2
. J . .
I=stm'”xdx=-2- sm"‘xdx:nSsm’”xdx,
0 ]

B

which, taking into consideration the result of Problem 6.6.9, gives

a2 (m—1 . .
n = if m is even,
/ S in” xd 2 ml!!
=\xsmnmvxax = —nn .
b n(mm“l)' if m 1s odd.

1

6.6.11. Compute the integral I,,=Sx”‘(ln x)*dx; m>0, n is a
0
natural number.

Solution. First of all note that, though the integrand f (x) =x™ (In x)*
has no meaning at x=0 it can be made continuous on the interval
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[0, 1] for any m >0 and # >0, by putting f(0)=0. Indeed,

lim x” (Inx)"= lim (x71nx) =0
x—+>+0 x—>+0
by virtue of Problem 3.2.4.
Hence, in particular, it follows that the integral 7, exists at
m>0, n>0 To compute it we integrate by parts, puttmg

u =(lnx)", dv=x"dx,
__n(lnxn-? _xm+1
du————x dx, U—m—f—l'
Hence,
4 1
m+1 (] n|l
[n:§xm(lnx)"dx=x minlx) O—mil(Sx”‘(lnx)"‘ldx:——g%l,,_l.

The formula obtained reduces /, to /,_,. In particular, with a na-
tural n, taking into account that

we get

6.6.12. Compute the integral 7/, ,= Sx"‘(l—- x)*dx,

0
where m and n are non-negative integers.
Solution. Let us put
(1—x)"=u; x™dx=dv;

n- : _xm+1
du=—n(l—x)""tdx; v=r
Then
m+ 1 1
Lnn= By (1= + ,,,+15xm+1<1 — A= e
The obtained formula is valid for all n >0, and m > —1. li n

is a positive integer, then, applying this formula successively n
times, we get
- —_nk—l) -
lm.n_m+ ll m+1l,n-1 "‘(m_l_]) (m+2) 1m+2, n—-2
___n(n—l)...[n—(n—l)] ]
(m+1)(m+2).. .(mtn) mEnso
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But

1

m+ —
m+n 0 S "d)C—

0

xm+n+l |1 1

mtn+tllo mifntl’

Hence,

/ n(n—1)(n—2)...3.2-1

mn = mE1) (m+2)...(m+n) (m+at)
The obtained result, with m a non-negative integer, can be written
in the form

m!n!

I”l'n =

(m+4+n+1)1°
6.6.13. Compute the integrals:
1 1
(a) S arc tan }/ xdx; (b) S (x—1)e~*dx;
0 0
5 , .
© S g (d) Sx arc tan x dx;
s 0
T

(e) \ xIn(1 4 x?)dx; (f) \ In(14-tanx)dx;

Cv|a P -
°L/1-aa|=l

16

(g) \ sin2xarctan(sinx)dx; (h) Sarc tan]/l/Y——l dx.
i

6.6.14. Prove that

1

1
S(arc cos x)*dx = n(g)"-l— n(n—1) S (arccosx)""¢dx (n>1).
0 0

6.6.15. Prove that if f”(x) is continuous on [a, b], then the fol-
lowing formula is valid
b

§ xf" () de= [bf" (0)—f ()] — [af" (@) —F (@)].

§ 6.7. Approximating Definite Integrals
1. Trapezoidal formula. Divide the mterva] [a, b] into n equal

parts by points x,=a- kh, where h=—a— k=0, 1, ..., n, and
apply the formula

jfcx>dx~ | T+ )+ A F )+ T ()] -

]
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The error R in this formula is estimated as follows:

|R| < Mol —a?

o, where M,=a<sggblf” )|

(assuming that the second derivative is bounded).
2. Simpson’s formula. Divide the interval [a, b] into 2n equal

parts by points x,=a--kh, where h=”2_—na, and apply the formula

h
§7 G m 2224 (1) +F (ran) 4 1F (0) 7 ()

ot F Ko ) 2 [F (o) +F () 4+ -+ F (Ko o) ]

Assuming that f'V(x) exists and is bounded, the error in this formula
is estimated in the following way:

M, (b—a)®
| RIS Ty gage» Where M,= sup |F¥(9)].
1
6.7.1. Approximate the integral Izslj_xx using the trapezoidal
0

formula at n=10.

Solution. Let us tabulate the values of the integrand, the ordi-
nates y,=f(x,)(i=0, 1, ..., 10) being calculated within four de-
cimal places.

1 1

X 1+x Y=y xi 1+x =T
0.0000 1.0000 1.0000 0.6000 1.6000 0.6250
0.1000 1.1000 0.9091 0.7000 1.7000 0.5882
0.2000 1.2000 0.8333 0.8000 1.8000 0.5556
0.3000 1.3000 0.7692 0.9000 1.9000 0.5263
0.4000 1.4000 0.7143 1.0000 2.0000 0.5000
0.5000 1.5000 0.6667

Using the trapezoidal formula, we obtain

J=( % Nl(w+o.9091+0.8333+

14+x ~10 2
4+0.7692 4+ 0.7143 - 0.6667 + 0.6250 + 0.5882 + 0.5556 -
+ 0.5263) — - 6.9377 = 0.60377 ~0.6938.

Oy
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Estimate the error in the result obtained. We have f” (x) = T
Since 0<C{x<C 1, then |f"(x)|<<2. Consequently, we may take the
number 2 as M, and estimate the error:

1
|RI< 7osager = gop < 0-0017.

12><102

We calculated the ordinates accurate to four decimal places, and

the round-off error does not exceed ——— 0. 00005 (149x1)=0.00005 <more

0.00005 00005

precisely, ———.9=0.000045, since the ordinates y, and y,, are

exact numbers . Thus, the total error due to using the trapezoidal

formula and rounding off the ordinates does not exceed 0.0018.
Note that when computing the given integral by the Newton-
Leibniz formula we obtain

1

1— ln(l—l—x) =1In2 = 0.69315.

Thus, the error in the result obtained does not exceed 0.0007, i. e.
we have obtained a result accurate to three decimal places.
1.5

6.7.2. Evaluate by Simpson’s formula the integral Se(%c-dx

0'5
accurate to four decimal places.

Solution. To give a value of 2n which ensures the requlred accu-
1
racy, we find f1V(x). Successively differentiating f(x)=2 xx, we get

PV (x) = £ (0.0001xt —0.004x3 +0.12x2 — 2.4x + 24) = 2

eO 1x
where P (x) is the polynomial in parentheses. On the interval
[0.5, 1.5] the function ¢ (x)=e’!* increases amd therefore reaches
its greatest value at x=1.5: ¢ (1.5)=¢"1® < 1.2. The upper estimate
of the absolute value of the polynomial P (x) divided by x® can be
obtained as the sum of moduli of its separate terms. The greatest
value of each summand is attained at x=0.5, therefore

P (x) 0.0001 , 0.004  0.12
XB X + x2 + xa + + x5 \

< 0.0002 —I— 0.016 4 0.96 + 38.4 - 768 << 808.

And so, |f"(x)] < 1.2x808 < 1000. Hence, the number 1000 may
be taken as M,.

<
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We have to compute the integral accurate to four decimal places.
To ensure such accuracy it is necessary that the sum of errors of
the method, operations and final rounding off should not exceed
0.0001. For this purpose we choose a value of 2n (which will de-
termine the step of integration A) so that the inequality

|R| <~ -0.0001 =510
is satisfied.

Solving the inequality

151 000

80 @ <0 x107%

we obtain
2n > 19.

Let us take 2n = 20; then the step of integration & will be equal to
b—a 1
h=—5-=5;="0.05.

A more accurate calculation shows that at 2n =20
|R| < 3-5%x1075.
If we calculate y; within five decimal places, i. e. with an error
not exceeding 107° then the error of the final rounding off will

also be not greater than 10-%. Thus, the total error will be less
than 4.5x107° < 0.0001.

Now compile a table of values of the function y=é)';—x for the va-

lues of x from 0.5 to 1.5 with the step h=10.05. The calculations
are carried out within five decimal places.

i Xi 0.1x; 20.1X% yi

0 0.50 0.050 1.05127 2.10254
1 0.55 0.055 1.05654 1.92098
2 0.60 0.060 1.06184 1.76973
3 0.65 0.065 1.06716 1.64178
4 0.70 0.070 1.07251 1.53216
5 0.75 0.075 1.07788 1.43717
6 0.80 0.080 1.08329 1.35411
7 0.85 0.085 1.08872 1.28085
8 0.90 0.090 1.09417 1.21574
9 0.95 0.095 1.09966 1.15754
10 1.00 0.100 1.10517 1.10517
11 1.05 0.105 1.11071 1.05782
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[ X7 0.1x e0-1%; Ui

12 1.10 0.110 1.11628 1.01480
13 1.15 0.115 1.12187 0.97554
14 1.20 0.120 1.12750 0.93958
15 1.25 0.125 1.13315 0.90652
16 1.30 0.130 1.13883 0.87602
17 1.35 0.135 1.14454 0.84781
18 1.40 0.140 1.15027 0.82162
19 1.45 0.145 1.15604 0.79727
20 1.50 0.150 1.16183 0.77455

For pictorialness sake we use the tabular data
following calculation chart:

to compile the

Yi

! x4 at ﬁigoa"d at an odd: at an even ¢
0 0.50 2.10254
1 0.55 1.92098
2 0.60 1.76973
3 0.65 1.64178
4 0.70 1.53216
5 0.75 1.43717
6 0.80 1.35411
7 0.85 1.28085
8 0.90 1.21574
9 0.95 1.15754
10 1.00 1.10517
11 1.05 1.05782
12 1.10 1.01480
13 1.15 0.97554
14 1.20 0.93958
15 1.25 0.90652
16 1.30 0.87602
17 1.35 0.84781
18 1.40 0.82162
19 1.45 0.79727
20 1.50 0.77455

Sums 2.87709 12.02328 10.62893

Using Simpson’s formula, we get

1.5

en.1%
X

0.5

dx~ g5 (2.87709 4 % 12.02328 +

+2x10.62893) = g - 72.22807 = 1.2038.
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6.7.3. The river is 26 m wide. The table below shows the succes-
sive depths of the river measured across its section at steps of 2 m:

x 0'2 4 6 8 10 | 12| 14116 18|20 | 222426

y 0.3'0.9 1.7(2.1]2.8(3.4|3.3(3.0/3.5/12.9{1.7|1.2{0.8|0.6

Here x denotes the distance from one bank and y, the correspond-
ing depth (in metres). Knowing that the mean rate of flow is
1.3 m/sec, determine the flowrate per second Q of the water in the
river.

Solution. By the trapezoidal formula the area S of the cross-sec-
tion

26
S = Sydxz? [%(0.34—0.6)—]—0.9-}- 17421428434+
0

4+3.343.043542941.7+ 1.2—|—0.8J —=55.5 (m?).

Hence,
Q=>55.5x1.3 ~72 (m?sec).

It is impossible to estimate the error accurately in this case. Some
indirect methods of estimation enable us to indicate approximately
the order of the error. The error in S is about 3 m?, hence, the
error in Q is about 4 m?3/sec.

6.7.4. Compute the following integrals:

**Zdx accurate to three decimal places, using Simpson’s

(a)

RIS

formula;
1

(b) Se"‘z dx accurate to three decimal places, by the trapezoidal
0
formula.

6.7.5. By Simpson’s formula, approximate the integral

1.36

1= § fwdx,
1.06



§ 6.8. Additional Problems 307

if the integrand is defined by the following table:

X 1.05 1.10 1.15 1.20 1.25 1.30 1.35

f (x) 2.36 2.50 2.74 3.04 3.46 3.98 4.6

§ 6.8. Additional Problems
6.8.1. Given the function
l—x at 0<Cx<1,
fx)= 0 at 1 <x<<?2,
(2—x)* at 2<x<3.

Check directly that the function

x

F={i@at

0

is continuous on the interval [0, 3] and that its derivative at each
interior point of this interval exists and is equal to f(x).

6.8.2. Show that the function

( xInx

—, at 0<x <1,
f(x)={ 0 at x=0
t—1 at x=1
is integrable on the interval [0, 1].

6.8.3. Can one assert that if a function is absolutely integrable
on the interval [a, b], then it is integrable on this interval?

6.8.4. A line tangent to the graph of the function y =f(x) at the
point x=a forms an angle % with the axis of abscissas and an

angle % at the point x=b.

b
Evaluate Sf" (x)dx, if f"(x) is a continuous function.
a

6.8.5. Prove that

S E@ydrx =20EB=D 4 £y [x—E ).
1]



308 Ch V1. The Definite I[ntegral

J

6.8.6. Given the integral S dx

TFcos?x” Make sure that the fun-
0

ctions

1 ¥V 2cosx .
F, (x)-———lf_2 arc cos—‘/1+coszx and F, (x)= V__ arc tan

tan x
Vs
are antiderivatives for the integrand. Is it possible to use both an-

tiderivatives for computing the definite integral by the Newton-
Leibniz formula? If not, which of the antiderivatives can be used?

6.8.7. For f(x) find suchan antiderivative which attains the given
magnitude y=y, at x=ux, (Cauchy’s problem).

b

6.8.8. At what value of £ is the equality Se“dx e* (b—a) ful-
filled? Show that ’

6.8.9. Investigate the function defined by the definite integral
F={yT=fa.

0

6.8.10. Show that the inequalities

1

0.692 < { xrdr <1
0
are valid.

6.8.11. With the aid of the inequality x >sinx> %x (0<x<

J'l:

%) show that 1<Swd <§-

6.8.12. Using the inequality sinx}x—%(x}O) and the Schwarz-
Bunyakovsky inequality, show that

1.096 < { Vxsinxdx < 1.111.

e/ '°|:'

6.8.13. Assume that integrable functions p, (x), p, (x), ps (x), p, (%)
are given on the interval [a, b], the function p, (x) is non-negative,
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and the functions p, (x), p; (x), p,(x) satisfy the inequality
Ps (%) < ps (%) << Pa ()
Prove that
b b b

§ £y (0 0 (0 dx < § 9 (9 py (6 de < § p, (¥) p, () v,

a

6.8.14. Let the function f(x) be positive on the interval [a, b].
Prove that the expression
h

§f (%) dx- ,(x,

reaches the least value only if f(x) is constant on this interval.
6.8.15. Prove that

1

Sarc tan xdx - l
X 2

Ldt.

sin

°Q/7wl.':1

6.8.16. Prove that one of the antiderivatives of an even function
is an odd function, and any antiderivative of an odd function is
an even function.

6.8.17. Prove that if f(x) is a continuous periodic function with
a+T

period T, then the integral /= S f(x)dx does not depend on a.

a

6.8.18. Prove that if u=u(x), v=v(x) and their derivatives
through order n are continuous on the interval [a, 0], then

b
S uo'dx = [uvm—u_ulvm—m + e —l—(—l)"'l u(n—l)U] |Z+
a

b
=1y § um o dx.



Chapter 7

APPLICATIONS
OF THE DEFINITE INTEGRAL

§ 7.1. Computing the Limits of Sums with
the Aid of Definite Integrals

It is often necessary to compule the limit of a sum when the
number of summands increases unlimitedly. In some cases such li-
mits can be found with the aid of the definite integral if it is pos-

sible to transform the given sum into an integral sum.
. . . . 1 2 n .
For instance, considering the points T ey 83 points of
division of the interval [0, 1] into n equal parts of length Ax= %,
for each continuous function f(x), we have

i 4 [1(5)+ <;>+..-+f<%>]=s;w

7.1.1. Compute

lim 7“ sm——}-sm2—ﬂ +sm l)n] .
Solution. The numbers in brackets represent the values of the
function f(x) =sinx at the points
&, 2n | . _(n—Dmn

X, = Xg=—, ... Xpoq =
1 n’ 2 ’ ’ n—1 n

n ’

subdividing the interval [0, n] into n equal parts of length Ax==

Therefore, if we add the summand sin'—lnf=0 to our sum, the lat-

ter will be the integral sum for the function f(x)=sinx on the
interval [0, =m].

By definition, the limit of such an integral sum asn — oo is the
definite integral of the function f(x)=sinx from 0 to m:

lim%(sin%+sin:2nﬂ+,__+51n l)n—l—sn )

n- o

n
. U
=Ssmxdx=—cosx|0 = 2.
b
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7.1.2. Compute the limit

: 1 1 1
l prmm—— e DY ]
aa (V4n2—| +V4n2—22 + +V4n2—n2>'
Solution. Transform the sum in parentheses in the following way:

| 1 1
-+ oo e —— ==
Viani—1 ' Van2—22 - +l/4n2—n2
1

1 1 1
Sy I E— ——————>
n s 1 2 \2 n\2]j.
Ve Ve e
The obtained sum is the integral sum for the function f(x) =

———L_ on the interval [0, 1] subdivided into n equal parts.

X2
The limit of this sum as n— oo is equal to the definite integral
of this function from 0 to I:

oo+

. | 1 1
nlimw <V4n2—1 T ] Tt V4n2—n2) o

7.1.3. Compute

i 31wy oV oV it 4V )

Solution. Transform the given expression in the following way:
3 n n n
7[1_!_ l/n—|—3+ ]/n+6+ ceet ]/n+3(n—-l)] =
3 1 1 1 1
= +‘/ + 1/ +- --—I-‘/——:—
H[VI—I—O 1+% 1+% 1+3(nn Dl

The obtained sum is the integral sum for the function f(x)=
= V IL on the interval [0, 3]; therefore, by definition,

nh-lnw;(l—i_ l/n+3+ l/n+6+ -t ]/fﬁﬁ———r»:

]/H_xdx J(l %) T g 2V1—|—xl _4—9-9
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7.1.4. Using the definite integral, compute the following limits:

(a) lim (,,JIH+,1—J'FE+.. .+n_j;;>;
1+%>;

n - «

o) im (Y 1 Y 2

1+ 24y 8+ +/n

(d) lim = <l—|—cos +cos ?’:—{- . -cos ¢ 2””);

1
(e) lim n[(n+l)2+(n+2)2—|—. —I-WJ .

n -» o

7.1.5. Compute the limit A=Iim ‘/n .

n—-»ao

Solution. Let us take logarithms

Vol . 1 2
lim '/n" =}1Lr1l;[ln7+ln7+...+ln%].

The expression in brackets is the integral sum for the integral
1

S Inxdx =(xIn x—x)‘o____l

0
1/n!
n

InA=Ilimln

=e 1,

Consequently, InA=—1 and lim

n—->w

§ 7.2, Finding Average Values of a Function

The average value of f(x) over the interval [a, b] is the number
b

u=7,'_—a5'f(x)dx.

a
1

2
x)]zdx of the average value of the

The square root | —

QC/3Q_

square of the functlon is called the root mean square (rms) of the
function f(x) over [a, b].

7.2.1. Find the average value p of the function f(x)=j/ x over
the interval [0, 1].

Solution. In this case
4
_3'

1
1 3
OS o 4
c
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7.2.2. Find the average values of the functions:
(@) f(x )—sinzx over [0, 2x];

(b) fx)= T:FT over [0, 2].

7.2.3. Determine the average length of all vertical chords of the

hyperbola Z—i—%z] over the interval a<Cx<C2a.

Solution. The problem consists in finding the average value of
the function ]‘(x)=2y:2£|/x2—a2 over the interval [a, 2a]:

= 711.‘) ‘/xz adx =

-i—[ Ve —a—% In(x+ Vx_z_az)]za =b[2V3—In@2+V3)]

7.2.4. Find the average ordinate of the sinusoid y=sinx over
the interval [0, m].

Solution:
I

== ~0.637.
0

Qe

n
1
w=— smxdx=——cosx
0

Rewrite the obtained result in the following way:

||
';llw

M4
S sin x dx.
0

Using the geometric meaning of the definite integral, we can say
that the area of the rectangle with the altitude p=2 and the base
n equals the area of a figure bounded by a half-wave of the sinu-
soid y=sinx, 0<C{x<{m, and by the x-axis.

7.2.5. Find the average length of all positive ordinates of the
circle x>+ y?=1.

7.2.6. Show that the average value of the function f(x), conti-
nuous on the interval [a, b], is the limit of the arithmetic mean
of the values of this function taken over equal intervals of the
argument x.

Solution. Subdivide the interval [a, b] into n equal parts by the
0, 1,2, ..., n.
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Form the arithmetic mean of the values of the function f(x) at
n points of division x4, X, ..., X,_;:

n-1

W, =f(xo)+f (Xl)‘;- o+ (xn—l)=%2f (xi)'
i=0

This mean may be represented in the following form:

n-1
1
B, = b—a E f(xi) Axi'
i=0

where
b—a

Axi=
n

The latter sum is the integral sum for the function f(x), the-
refore |
n-— b
. - 1
limp, =p——lim 3 f (%) Ax; =5 ( F (x) dx =,
n—-o =0

n—>ao
a

which completes the solution.
7.2.7. Find the average value of pressure (p,) varying from 2
to 10 atm if the pressure p and the volume v are related as follows:
3
pu? = 160.
Solution. As p varies from 2 to 10 atm, v traverses the interval
[4}/4, 43/100]; hence

1 + 3/ 100 s
= ———a—— 1600_-2— dv =
Pn = G 00—/ 1) Sj_
4 ‘/4
320 -5 |+ /100 40

~ 4.32 atm.

=—--——_——Tv - = — — =
s(Vwo—y 4y /e V2 10+ 2)
7.2.8. In hydraulics there is Bazin’s formula expressing the velo-
city v of water flowing in a wide rectangular channel as a function

of the depth A at which the point under consideration is situated
below the open surface,

v=u,— 20 VHL (#)2,

where v, is the velocity on the open surface, H is the depth of
the channel, L its slope.

Find the average velocity v, of flow in the cross-section of the
channel.
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Solution. We have
v,,,=ﬁ1§[vo—201/7-17( )]dh_vo—-—VHL
0

7.2.9. Determine the average value of the electromotive force
E, over one period, i.e. over the time from ¢=0 to {=T, if
electromotive force is computed by the formula

E=E,sin— 2“’
where T is the duration of the penod in seconds, E, the amplitude

(the maximum value) of the electromotive force corresponding to

the value ¢=0.25T. The fraction 2—;? is called the phase.
Solution.

T
E0 2nt E,T 2T
T sin — - dt = Tom [ cos—f—]o =0.

Thus, the average value of the electromotive force over one pe-
riod equals zero.

7.2.10. Each of the two vertical poles OA and CD is equipped
with an electric lamp of luminous intensity i fixed at a height A.
The distance between the poles is d. Find the average illumination
of the straight line OC connecting the bases of the poles.

7.2.11. Find the average value of the square of the electromotive
force (E?), over the interval from ¢=0 to t=% (see Prob-
lem 7.2.9).

Solution. Since

E—Eosmg,
we have
_g —g-l cos4m
2 ont 2 ¢ T
(E2), = ESsm2——dt 7—.E0§ Tt =
0 0

Eg T . 4L E}
7["—255‘"7“]0' =7 -

7.2.12. If a function f(x) is defined on an infinite interval
[0, oo), then its average value will be

b
w=lim —Hf(x) dx,
0
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if this limit exists. Find the average power consumption of an
alternating-current circuit if the current inlensity / and voltage u
are expressed by the following formulas, respectively:
=/, cos (of +a);
u=u,cos (ot + o+ ),
where ¢ is the constant phase shift of the voltage as compared

with the current intensity (the parameters w and a will not enter
into the expression for the average power).

Solution. The average power consumption

w, = lim = locos((ot+oc)u cos (0f 4 a -+ @) dt.

T-»oo

Taking into conSIderatlon that

cosa cosf = % [cos (e + B) + cos (e —B)],
we will get

T
louy

o | [cos (20t + 20+ @) + cos @] dt=
0

w,, = lim
T-»co
oo

!
COS(P, _TCOS([)

T loug sin QT 420+ @) —sin (2a+¢) | /o4,
— lim {752 T +

Hence, it is clear why so much importance is attached to the
quantity cos¢ in electrical engineering.

7.2.13. Find the average value p of the function f(x) over the
indicated intervals:

(a) f(x)=2x>+1 over [0, 1];

(b) f(x)-—-—% over [I, 2];

(c) f(x)=3*—2x+3 over [0, 2].

7.2.14. A body falling to the ground from a state of rest acqui-

res a velocity v, =)/ 2gs, on covering a vertical path s=s,. Show

that the average velocity v, over this path is equal to 2%

7.2.15. The cross-section of the trough has the form of a para-
bolic segment with a base a and depth A. Find the average depth
of the trough.

7.2.16. Find the average value /,, of alternating current intensity
over time interval from 0 to % (see Problem 7.2.12).
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7.2.17. Prove that the average value of the focal radius of an
ellipse p:l—_sﬁcﬁ, wherep=b7'; a, b are the semi-axes and ¢ is
eccentricity, is equal to b.

7.2.18. On the segment AB of length a a point P is taken at a
distance x from the end-point A. Show that the average value of
the areas of the rectangles constructed on the segments AP and

PB is equal to a_g‘
7.2.19. Find the average value of the function

f(x)=

cos? x
sin? x4 4 cos? x

over the interval lO, g—] Check directly that this average, equal

to é—, is the value of the function f(x) for a certain x=§ lying

within the indicated interval.

§ 7.3. Computing Areas in Rectangular Coordinates

If a plane figure is bounded by the straight lines x=a, x =
=b(a<b) and the curves y=y, (x), y=y,(x), provided y, (x)<<
<y, (x) (a<x<b), then its area is computed by the formula

b

S= S [yz (X)—y, (¥)] ax.

a

In certain cases the left boundary x=a (or the right boundary
x=>b) can degenerate into a point of intersection of the curves

¥ Hégz@) c ¥
/)
18 i i
Al 4= : ! H
) | i g
| ] z L Z
ey b o o) ’
Fig. 65

y=y,(x) and y=y,(x). Then a and b are found as the abscissas

of the points of intersection of the indicated curves (Fig. 65, a, b).
7.3.1. Compute the area of the figure bounded by the straight

lines x=0, x=2 and the curves y=2%, y=2x—x* (Fig. 66).
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Solution. Since the maximum of the function y=2x—x2 is at-
tained at the point x=1 and is equal to 1, and the function
y=2*>1 on the interval [0, 2], we have

2 3 4

o 2 3°

5= a5 =(o=3)
0

7.3.2. Compute the area of the figure bounded by the parabolas
x=—2y%, x=1—3y? (Fig. 67).

4

4 / g
Q ————————————
i 1
. N 2

1

; | y=2z-z%2 2 -1 %i z
1 \

0 1 2z % Tt -1
Fig. 66 Fig. 67

Solution. Solving the system of equations
{ x =2y
x=1—3y2,
find the ordinates of the points of intersection of the curves y, =—1,

y,= 1. Since 1—3y? =—2¢4* for —1 <Ty<1, then we have

1
3
s= [ [1—3p)—(—2)] dy=2 (y—4 )|, = 5
=1
7.3.3. Find the area of the

figure contained between the Y
parabola x? =4y and the witch

. 8 .
of Agnesi y=w7 (see Fig.
68).

Solution. Find the abscis-
sas of the points A and C of

intersection of the curves. For
this purpose eliminate y from Fig. 68
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the system of equations

whence }2—8_,3 o or X442 —32=0.
The real roots of this equation are the points x,=—2 and
2
X,=2. As is seen from the figure, }%2% on the interval

[—2, 2]. (It is also possible to ascertain this by directly computing
the values of these functions at any point inside the interval, for
instance, at x=0.)

Consequently,

S= S<x2+4 x2>dx--(4arctan f;)lg —2n——%.

7.3.4. Find the area of the figure bounded by the parabola
y=x2+1 and the straight line x4+ y=3.

7.3.5. Compute the area of the figure which lies in the first qua-
drant inside the circle x®+y?>=3a? and is bounded by the parabo-

las x*=2ay and y*=2ax(a>0) (Fig. y
69). 2.20%

Solution. Find the abscissa of the po-  a/d Y
int A of intersection of the parabola 7] A S
y*=2ax and the circle x?-4 y*=3a®. I ,,/f\’
Eliminating y from the system of equa- &
tions

{ x2+y2 =3a2’ -
¥ =2ax, o\ e o243

we obtain x%4-2ax—3a? =0, whence we Fig. 69

get the only positive root: x, =a. Analo-
gously, we find the abscissa of the point D of intersection of the

circle x*44*=3a* and the parabola x*=2ay; xp=al/ 2.
Thus, the sought-for area is equal to

aVy

§ (9 0—y, ()] dx,

0

[ V2ax for 0<x<a,

%2
where yl(x)=§,» ya(x)zl V3az x2 for a<x<al/2
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By the additivity property of the integral
aVye

S=§(V2_ax—§l)dx-|— { (vae=—r—5)dx=
0 a

3 _ vE
T__f:_i a x 2 y2 3_ ﬁ ars_
[l/ &2 0—}- [2 V32 —x + —arcsin —— V_ al, =
V2 1 V2 1
in ———arcsin — | — A+ =—at=
6—[— (arcsmV3 V3) +5

<V2 -+ = arcsin ; ) at.
Here we make use of the trigonometric formula:

arcsina—arcsinp =arcsin(a@ )V T—p2—BV 1—a?) (ap > 0)
for transforming

arcsin ]/3 arcsm =arcsin ( l/- l/————VT—V_—e’-)

— in —
arcsn3

7.3.6. Compute the area of the figure lying in the first quadrant
and bounded by the curves y®= 4x,
=4y and x*+y*=35.

7.3.7. Compute the area of the
figure bounded by the lines y=
x+1, y=cosx and the x-axis

> ¢ (Fig. 70).

-1 lo 1 w2 _
Fi Solution. The function
ig. 70

{x—l—l if —1<<x<<0,
y=f(x)=1cosx if O<x<%

is continuous on the interval | —1, %] . The area of the curvili-

near trapezoid is equal to

NE

0

S———:S?]f(x)dx=3v (x+1)dx+§cosxdx— 3

(x+12[0
?-

+smx

S
2=
o 0

7.3.8. Find the area of the segment of the curve y?=x*-—x* ii
the line x=2 is the chord determining the segment.
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Solution. From the equality y?*=x?(x—1) it follows that
x2 (x—1) >0, therefore either x=0 or x>1. In other words, the
domain of definition of the implicit function y*>=x®—x* consists
of the point x=0 and the interval [1, oo). In computing the area
the isolated point (0, 0) does not play any role, therefore, the
interval of integration is [1, 2] (see Fig. 71).

Passing over to explicit representation y= +xV x—1, we see
that the segment is bounded above by the curve y=xV x—1 and
below by the curve y=—xl/x—1. Hence,

2

S= S [V x—1—(—xVx—1)]dx=2 S xV x—1dx.

1 1

Make the substitution g
X t (;\
x—1=12, &‘S’
dx=2tdt, | o | y
2 I 3
Then z
\ to 3771 32 !
s=afesnra—s [545]-%
0

7.3.9. Determine the area of the figure
bounded by two branches of the curve
(y—x)>*=x* and the straight line x=1.

Solution. Note first of all that y, as an Fig. 71
implicit function of x, is defined only for
x>0; the left side of the equation is always non-negative. Now

we find the equations of two branches of the curve y=x—xVx,

y=x+x)V x Since x>0, we have x+x)V x>=x—x) x, and
therefore

1 i 5
S=§(x+xl/?—-x +xV7)dx=2§xV—fdx=-§—x2 |;=%.

7.3.10. Compute the area enclosed by the loop of the curve
yr=x(x—1)>%

Solution. The domain of definition of the implicit function y is
the interval 0 <Cx <+ oo. Since the equation of the curve conta-
ins y to the second power, the curve is symmetrical about the
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x-axis. The positive branch y, (x) is given by the equation

Vx(l—x), 0<x<1,
V x(x—1), x> 1.
The common points of the symmetrical branches y, (x) and y, (x) =
= —y, (x) must lie on the x-axis. But y, (x)=) x|x—1]|=0 only
at x,=0 and at x,=1.

Consequently, the loop is formed by the curves y =} x(1—x)

and y=—Vx(1—x), 0<x<<1 (see Fig. 72), the area enclosed
being

y=y,(x>=l/7lx—ll={

1 1 1 3
S=2S V?c(l—-x)dx=25(x2 —x2>dx=-l%.
0 0

7.3.11. Find the area enclosed by the loop of the curve
yr=(x—1)(x—2).

Y
7
4 yz=${$—/)2

3

1

— z L

0 -0 1\2 *

[
|
Fig. 72 Fig.73

7.3.12. Find the area of the figure bounded by the parabola
y=—x*—2x-3, the line tangent to it at the point M (2, —5)
and the y-axis.

Solution. The equation of the tangent at the point M (2, —5)
has the form y4+5=—6(x—2) or y=7—6x. Since the branches
of the parabola are directed downward, the parabola lies below the
tangent, i.e.7—6x>—x*—2x+3 on the interval [0, 2] (Fig. 73).

Hence,

2 2
S= S [7—6x—(—x*—2x+3)] dx= S(x2—4x+ 4)dx =—§ .
0 0
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7.3.13. Find the area bounded by the parabola y=x*—2x+2,
the line tangent to it at the point M (3, 5) and the axis of ordi-
nates.

7.3.14. We take on the ellipse
2 2
S+5=1 (a>b)

a point M(x, y) lying in the first quadrant.
Show that the sector of the ellipse bounded by its semi-major
axis and the focal radius drawn to the point M has an area
S =a—2barccosi.
a

With the aid of this result deduce a formula for computing the
area of the entire ellipse.

(\L; IS
N e
¥ BN M
2l A B
Ké rey 4=
A
o 1._
! By Jo o ©
1 0 1 z
Fig. 74 Fig. 75

Solution. We have (Fig. 74):

Somao =Saomp+ Smasms  Saoms= —2— =5 x Va—x

a

a

SMABM:L\ydx S Var—1? tzdt_ (tVa-—t2+a2arc51nt>’Z=
X X

_b e (D arcsin ) |

= [_xl/az—ﬁ +a (2 arcsma)J .

. 11 . X X .
Since = —arcsin = = arc cos—, we obtain
2 a a

b —_— x
Smapm=2; [—JcI/cz2—)c2 + a? arc cos —a—] .
Hence

ab X
Somao =Saoms+ Smasm—+ - arccos—.
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At x=0, the sector becomes a quarter of the ellipse, i.e.

! ab ab @m  ab
Tsellipse - arCCOSO:—Q—. ..2_=Tn,
and consequently, Settipse = Tab. At a=>b we get the area of a circle

S = na.

circle
2

7.3.15. Find the area bounded by the parabolas y=4x? y=f9-

and the straight line y=2.

Solution. In this case it is advisable to integrate with respect
to y and take advantage of the symmetry of the figure (see Fig. 75).
Therefore, solving the equations of the parabolas for x, we have:

x=i12_y—, x=+3Vy.

By symmetry of the figure about the y-axis the area sought is
equal to the doubled area S, ,z0:

2 ?
R Var - 20V 2
3=230Aao=2§(3Vy—7l/y>dy=5§l/ydy= L/ :
0 0

7.3.16. From an arbitrary point M (x, y) of the curve y==x"
(m > 0) perpendiculars MN and ML (x> 0) are dropped onto the
coordinate axes. What part of the area of the rectangle ONML does
the area ONMO (Fig. 76) constitute?

¥ m ¥
=z
L M y 1\\ - ytg\wl‘
NS S D
i X5 ] < ©
N e
— z _—=TaE
g N 1Tyt
Fig. 76 Fig. 77
7.3.17. Prove that the areas S,, S,, S,, S;, ..., bounded by the

x-axis and half-waves of the curve y=e~**sinfx, x>0, form a
aT

geometric progression with the common ratio g—=e B.
Solution. The curve of Fig. 77 intersects the positive semi-axis
Ox at the points where sin Bx= 0, whence
nn

x"=T, n=0, l, 2, eee
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The function y=e~**sinPx is positive in the intervals (x,z, Xop.,)
and negative in (X,5.;, Xs44,), i-€. the sign of the function in the
interval (x,, x,,,) coincides with that of the number (—1)". Therefore

(n+1)m (n+)m
B B
So= § lyldex=(=1)" § e-=sinpxdx.

n
nr ni

B r}
But the indefinite integral is equa] to
Xe““"sinﬁxdx=— (asin Bx+-B cos fx) 4 C.

2 + B).
Consequently,

(n+1)yn

S, = (—1)y*+ [a‘:—iﬁz ( sin x 4P cos Bx)] Ln P
T

_ (—1n+1 [e—a(n+l)ﬂ/ﬁﬂ (_1)n+1_eomﬂ/ﬂﬁ (_l)n] =

= artp?
= az_?_ p? e~onn/B (l + e—(mm)'
Hence
4= Sn+1 _ e—a(n+ 1)n/B _ g—anf®
S, o= an/B ’

which completes the proof.

7.3.18. Find the areas enclosed between the circle x*+4 y*—2x+
+4y—11=0 and the parabola y=—x*+2x+1—2}) 3.
Solution. Rewriting the equations of the curves, we have:

(x— 1P+ (y+2) = 16, y
y=—(@x—12—2Y) 3+2.
Consequently, the centre of the
circle lies at the point C(1, —2)
and the radius of the circle equals
4. The axis of the parabola coin-
cides with the straight line x=1
and its vertex lies at the point
B(, 2, —2V'3) (Fig. 78).
The area S, gpps of the smaller
figure is found by the formula

*D
Saspra= S (Ypar—Ycirere) 4%,
*4
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where x, and x, are determined from the system of equations
| =1y +@+2r =16,
ly+2=—@x—1y—2V3 +4,

whence x,=—1, xp=3.
Hence,

3
Sanpra= § [(—x2 4+ 2%+ 12V 3) - 2+ VTb—(x—1)2)] dx =

— |5+ +E—2Va 4+ YV TE—G—1p+

+§arc sin 5‘;;—1]?=%2—8 V3 +2V 12+ 16arc sin%=

32 5, 8
=§—~4 VS —I—--S— Jt.

The area of the second figure is easy to determine.

Note. The computation of the integral can be simplified by using
the shift x—1=2z and taking advantage of the evenness of the
integrand.

7.3.19. Compute the area bounded by the curves y=(x—4)3,
y=16—x? and the x-axis.

7.3.20. Compute the area enclosed between the parabolas
x=y? x———%yz—kl.
7.3.21. Compute the area of the portions cut off by the hyper-
bola x2—3y?=1 from the ellipse x*-4y*>=38.

7.3.22. Compute the area enclosed by the curve y? =(1—x?)3.

7.3.23. Compute the area enclosed by the loop of the curve
4 (y* —x¥)+x*=0.

7.3.24. Compute the area of the figure bounded by the curve
Vx +Vy =1 and the straight line x4 y=1.

7.3.25. Compute the area of the figure enclosed by the curve
y?=x%(1—x?).

7.3.26. Compute the area enclosed by the loop of the curve
B+ x—y*=0.

7.3.27. Compute the area bounded by the axis of ordinates and
the curve x=y?(1—y).

7.3.28. Compute the area bounded by the curve y=x*—2x3|

+ x*+ 3, the axis of abscissas and two ordinates corresponding to
the points of minimum of the function y (x).
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§ 7.4. Computing Areas with Parametrically Represented
Boundaries

If the boundary of a figure is represented by parametric equations
x=x(1), y=y(@),

then the area of the figure is evaluated by one of the three for
mulas:

B B B
S=— Sy ) x' (H)dt; S =Sx(t)y’(t)dt; S=—21—S(xy'—yx')dt,

[

where o and B are the values of the parameter ¢ corresponding
respectively to the beginning and the end of the traversal of the
contour in the positive direction (the figure remains on the left).
7.4.1. Compute the area enclosed by the ellipse
x=acost, y=bsint (0<t<2n).
Solution. Here it is convenient first to compute

xy' —yx' =acost xbcost+bsint xasint=ab.
Hence

7

1
S=+

oy

2n
(xy' —yx")dt = —é— S abdt = nab.
0

2 2
7.4.2. Find the area enclosed by the astroid (%)T—l— (i> L

a
Solution. Let us write the equation of the astroid in parametric
form: x=acos*t, y=asin®*f, 0<{¢t<2n. Here it is also conve-
nient to evaluate first

xy' —yx' =a*(cos®t-3sin*fcost+sin®t-3cos? ¢ sint) =
=3a? cos? { sin?¢.

Hence,
21 2n

S= | (v’ —yxdt =%a25 sin® 2t dt = 3 a*m.
0 0

7.4.3. Find the area of the region bounded by an arc of the
cycloid x=a(t—sint), y=a(l—cos¢) and the x-axis.

Solution. Here the contour consists of an arc of the cycloid
(0<<t<2n) and a segment of the x-axis (0<Cx<C2ma). Let us

]

apply the formula S=—Syx'dt.

a
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Since on the segment of the x-axis we have y=0, it only re-
mains to compute the integral (taking into account the direction
of a boundary traversal):

0 2n
S=—F{ a(1—costya(l—costydt=a § (1—costyrdt =
2n 0

27
=a? S [1 —2 cost—l——; (1 +c052t)] dt = 3na?.
0

7.4.4. Compute the area of the region enclosed by the curve
x=asint, y=>bsin2¢.

Solution. When constructing the curve one should bear in mind
that it is symmetrical about the axes of coordinates. Indeed, if we
substitute m—¢ for ¢, the variable x remains unchanged, while y
only changes its sign; consequently, the curve is symmetrical about
the x-axis. When substituting n-+¢ for ¢ the variable y remains
unchanged, and x only changes its sign, which means that the
curve is symmetrical about the y-axis.

4

/

/
/

Fig. 79

Furthermore, since the functions x=asin{; y=>bsin2¢f have a
common period 2m, it is sufficient to confine ourselves to the fol-
lowing interval of variation of the parameter: 0<C{<2m.

From the equations of the curve it readily follows that the va-
riables x and y simultaneously retain non-negative values only

when the parameter ¢ varies on the interval [0, g—] , therefore at
0<t\<=i;- we obtain the portion of the curve situated in the first
quadrant. The curve is shown in Fig. 79.

As is seen from the figure, it is sufficient to evaluate the area
enclosed by one loop of the curve corresponding to the variation
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of the parameter ¢ from 0 to m and then to double the result

L n n
S§=2 Syx’dt:? Sbsin?txacostdt=4abScos2tsintdt=
0 0 0
cos®f\ v 8

7.4.5. Find the area of the region enclosed by the loop of the
curve

t ) £
i=p 61 y="g(6—1).
Solution. Locate the points of self-intersection of the curve. Both
functions x (f) and y(¢) are defined throughout the entire number
scale —oo <t < o0.

At the point of self-intersection the values of the abscissa (and
ordinate) coincide at different values of the parameter. Since x=

= 3——;—(t—3)2, the abscissas coincide at =3 + A. For the func-
tion y (¢) to take on one and the same value at the same values
of the parameter ¢, the equality @%ME(S——M=(3—‘§m(3—|—?») must
be fulfilled for A=0, whence A =4-3.

i
¥

e 4
z
7 t=0 J

Fig. 80

Thus, at ¢,=0 and at ¢,=6 we have x({,)=x({,)=0, and
y(t)=y(t,) =0, i.e. the point (0, 0) is the only point of self-
intersection. When ¢ changes from 0 to 6, the points of the curve
are found in the first quadrant. As ¢ varies from 0 to 3, the

point M (x, y) describes the lower part of the loop, since in the
indicated interval x(¢) and y(t)=§% increase, and then the func-
tion x(f) begins to decrease, while y(¢) still keeps increasing. Fi-
gure 80 shows the traversal of the curve corresponding to increas-
ing ¢ (the figure remains on the left).
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In computing the area enclosed by the loop sought it is conve-
nient to use the formula

12 G-t2
2S(xy —yx')dt = S O 41—
0

7.4.6. Find the area enclosed by the loop of the curve: x=1%
t3

7.4.7. Compute the area enclosed by the -cardioid: x=
=acost (1+4cost); y=asint (1l +cost).

Solution. Since x(¢) and y(¢) are periodic functions, it is suifi-
cient to consider the interval [—mn, m]. The curve is symmetrical
about the x-axis, since on substituting —¢ for ¢ the value of the
variable x remains unchanged, while y only changes its sign, and
y>=0 as t varies from 0 to m.

As ¢ changes from 0 to = the function u=cos? decreases from

1 to —1, and the abscissa x=au(l+u)=a [—-;l‘-+(u+—é—>2]

a .
=2a to x‘ L =—7 and then increases
u=1 u=—-—

2

to x!,__,=0. We can show that the ordinate y increases on the
interval <0<t<% and decreases on the interval <%<t<n>.

The curve is shown in Fig. 81, the arrow indicating the direc-
tion of its traversal as ¢ increases.
Consequently,

first decreases from x

=7 S(xy —yx )dt—a“S(l +cost)’dt=—:na“

7.4.8. Compute the area of the region enclosed by the curve
x = cost, y=>bsindt.

7.4.9. Compute the areas enclosed by the loops of the curves:

(a) x=12—1, y==1r—t,

(b) x=2t—1? y=2{*—13

© x=1% y=5(B—10).

7.4.10. Compute the area of the region enclosed by the curve
x=acost; y=>bsintcos*t.

7.4.11. Compute the area enclosed by the evolute of the ellipse

c . [ ;
x=-0C08"1 y=—3sin’l =a"—0%
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§ 7.5. The Area of a Curvilinear Sector in Polar
Coordinates

In polar coordinates the area of a sector bounded by the curve
p=p(p) and the rays ¢, =oa and ¢,=f is expressed by the integral

]
1
S=7§pz(q>)dtp-

7.5.1. Find the area of the region situated in the first quadrant
and bounded by the parabola y?=4ax and the straight lines
y=x—a and x=a.

Solution. Let us introduce a polar system of coordinates by
placing the pole at the focus F of the parabola and directing the
polar axis in the positive direction
along the x-axis. Then the equation of

. _p 4
the parabola will be p—m,whe- A B
re p is the parameter of the parabola. 2 fax
In this case p=2a, and the focus F has J
the coordinates (a, 0). Hence, the equa- A
tion of the parabola will acquire the Y=z-a
form p=l2—a, and those of the
— cos @
straight lines will become (p=% and DW(‘Z)”) =z
= (Fig. 82). Therefore, Fig. 82
n 1
Fl 2
. l 4o _ de
44 14 2
T T
Changing the variable:
0} 2
@ _ 4 _ n/4 |cot (r/8
cot & =2, T dz, nj? (1 /8)|,

we obtain
cot (7/8)

Srapr=0a? S (14+23)dz=aqa? (cot %—I——é—coﬂ%—l—%)
1

l+cos (m/4)
sin (m/4) =1 +l 2

Spapr = 2a° (1 +3V 7).

or, taking into account that cot
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7.5.2. Compute the area of the region enclosed by

(b) the curve p=acos ¢.

7.5.3. Find the area of the regions bounded by the curve
p=2acos3¢ and the arcs of the circle p=a and situated outside
the circle.

Solution. Since the function p=2acos3¢ has a period T=2—3n’

the radius vector describes three equal loops of the curve as ¢ va-
ries between —n and n. Permissible values for ¢ are those at
which cos3¢ >0, whence

I o< B B (=0, £ 1, £2, ...).

Consequently, one of the loops is described as ¢ varies between

———g— and %, and the other two loops as ¢ varies between % and
—? , and between 7—; and 3Tn, respect-
ively (Fig. 83). Cutting out the parts,
belonging to the circle p=a, we get
the figure whose area is sought. Cle-
arly, it is equal to the triple area

MLNM"

Let us find the polar coordinates of
the points of intersection M and N.
For this purpose solve the equation

2acos3p=a,i.e.cos 3¢ =% . Between

— X and only the roots —= and
Fig. 83 6 6 9

% (k=0) are found. Thus, the point N

is specified by the polar angle ¢, =——g- , and the point M by ¢, =% .
As is seen from the figure,

SMLNM = SOMLNO - SOMNO =

I /9 ) /9 ﬁ
=3 S 4a® cos® 3¢ dp——- S atdp = a? (_‘91+ T) .
-/ 9 -/

7.5.4. Compute the area of the figure bounded by the circle
p=3V2 acosg and p =3asin ¢.

Solution. The first circle lies in the right half-plane and passes
through the pole p =0, touching the vertical line. The second circle
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is situated in the upper hali-plane and passes through the pole
p =0, touching the horizontal line. Consequently, the pole is a point
of intersection of the circles. The other Boint of intersection of the
circles B is found from the equation 312 acos¢=23asin ¢, whence

B(arctan)/2, a)/6). As is seen from Fig. 84, the sought-for area

Y

V3
B

A
C

7z 2
SVoa 0 z
/o=il/2_acw;o q\/z
Fig. 84 Fig. 85

S is equal to the sum cf the areas of the circular segments 0ABO
and OCBO adjoining each other along the ray ¢ =arctan})/2. The
arc BAO is described by the end-point of the polar radius p of
the first circle for arctan V2—<(p<i;-, and the arc OCB by the

end-point of the polar radius p of the second circle for 0<< Q<<
<arctan})/2 . Therefore

n

2

Soano = 9a? S cos%pd@:%cﬁ (£—arctanl/2——ﬁ) ,

2 3
arc tan V' 2
arc tan V2 9 5
Socuo=-3—a“’ S sinz(pd(p=71-a2 (arc tan )/ 2 _rz 3 )

b
Hence,

Soano~+Socso=2.250% (n—arctan )2 —)'2).

7.5.5. Find the area of the figure cut out by the circle p=)"3 sin¢
from the cardioid p==14cos¢ (Fig. 85).

Solution. Let us first find the points of intersection of these cur-
ves. To this end solve the system

{p=lf3‘sincp, 0<o<m,
op=1-+cosg,

19
whence ¢, =7, Q=7
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The sought-for area is the sum of two areas: one is a circular
segment, the other a segment of the cardioid; the segments adjoin
each other along the ray (p=%. The arc BAO is described by the
end-point of the polar radius p of the cardioid as the polar angle ¢

changes from % to m, and the arc OCB by the end-point of the

polar radius p of the circle for 0<¢p<§.
Therefore

3 n

1 .

S=7S35m2cpdcp—|—-%g(l—|—c05q>)2dcp=
0 n

T

T_I_L( -|—2$iﬂ —l—g—l—sm% nﬂ—
Z\? ¢y T )|+

=%(n—l/3_)-

7.5.6. Find the area of the figure bounded by the cardioid
p=a(l—cosg) and the circle p=a.
7.5.7. Find the area of the region enclosed by the loop of the
folium of Descartes x* - y®=3axy.
Solution. Let us pass over to polar coordinates using the usual
P A formulas x =pcos ¢, y=psing. Then
the equation of the curve is:

% (cos® @ + sin® ¢) = 3ap?® sin ¢ cos ¢,
or
__3asingcos®

-a N\ z T cosd pFsindg

3 sin 2¢
= (0—257)

. 3a sin 29
" (sing-+cosg) (2—sin 2¢) °

-2 [t follows from this equation that,
ﬁrSt]y’ p—_—O at (P=0 and at (p:% ,
Fig. 86 and secondly, p — oo as (P—>-:¥[- and

(p—»-——%. The latter means that

the folium of Descartes has an asymptote, whose equation y=
=— x—a can be found in the usual way in rectangular coordinates.
Consequently, the loop of the folium of Descartes is described

as ¢ changes from 0 to % and is situated in the first quadrant
(see Fig. 86).
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Thus, the sought-for area is equal to

1

S _ Ya? cos? ¢ sin® @
0A0 =g

oQ—’ﬁwl'z)

Taking advantage of the curve’s symmetry about the bisector
. n
y=x, i.e. about the ray ¢ ==, we can compute the area of half

of the loop (from =0 to (p=—::-) and then double it. This enab-
les us to apply the substitution

P
tan p =2, 0 0
dp 2 a ’
T % e 1
COos® @ 3

which gives

4 1
2 2 2
Sp10 =902 § cos? ¢ sin® ¢ d = 9a° 2° dz

(cos3 @ sin? ¢)2 § (14 2%)2°
Still new substitution
2z v
I+ 2=y,
322 dz =dv, 0 1
1 2

leads to the integral
2
Soao =3a% S%=—g—a2.
1

7.5.8. Compute the area of the region enclosed by one loop of
the curves:

(a) p=acos2¢; (b) p=asin2g.

7.5.9. Compute the area enclosed by the portion of the cardioid
p=a(l —cos@)lying inside the circle p =acos¢.

7.5.10. Compute the area of the region enclosed by the curve
p =asingcos*¢, a> 0.

7.5.11. Compute the area of the region enclosed by the curve
p=acos® ¢ (a>0).
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7.5.12. Compute the area of the portion (lying inside the circle

p=V——a=2> of the figure bounded by the Bernoulli’s lemniscate p=
=a)/ cos 2¢.

7.5.13. Passing over to polar coordinates, compute the area of
the region enclosed by the curve (x%-+ y?)® =4a?x2y2.

7.5.14. Passing over to polar coordinates, evaluate the area of
the region enclosed by the curve x*- y* =a? (x* + y?).

§ 7.6. Computing the Volume of a Solid

The volume of a solid is expressed by the integral

where S (x) is the area of the section of the solid by a plane per-
pendicular to the x-axis at the point with abscissa x; a and b are
the left and right boundaries of variation of x. The function S(x)
is supposed to be known and continuously changing as x varies
between a and b.

The volume V, of a solid generated by revolution about the
x-axis of the curvilinear trapezoid bounded by the curve y=f(x)
(f (x) =0), the x-axis and the straight lines x=a and x=0b (a < b)
is expressed by the integral

szngyzdx.
a

The volume V, of a solid obtained by revolving about the x-axis
the figure bounded by the curves y=y, (x) and y =y, (x) [0 <y, () <
< Y,(x)] and the straight lines x=a, x=0 is expressed by the
integral

b
Ve=n§ (g —ydx.
If the curve is represented parametrically or in polar coordinates,
the appropriate change of the variable should be made in the above
formulas.

7.6.1. Find the volume of the ellipsoid

x2 y2 22
atata =]
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Solution. The section of the ellipsoid by the plane x=const is
an ellipse (Fig. 87)
y2 22 1

(=5 (-5
with semi-axes b]/l——z, c]/l——z. Hence the area of the

section (see Problem 7.4.1)

S(x)=nb]/q Xc ]/:g;::nbc(l—;‘—:) (—ax<a).

Therefore the volume V of the ellipsoid is

V= Snbc(l———)dx—nbc’ Sx:]aa ;nabc.

In the particular case a=b=c the ellipsoid turns into a sphere,
and we have Vppere =

w|
a
Q
[

Z
LD‘\
) A RGAN
1o\
| iL= NN
| I IF - 'A)-
Yar e
£
/////B
4
Fig. 87 Fig. 88

7.6.2. Compute the volume of the solid spherical segment of two
bases cut out by the planes x=2 and x=3 from the sphere
x4y 22 = 16.

7.6.3. The axes of two identical cylinders with bases of radius a
intersect at right angles. Find the volume of the solid constituting
the common portion of the two cylinders.

Solution. Take the axes of the cylinders to be the y- and z-axis
(Fig. 88). The solid OABCD constitutes one-eighth of the sought-
for solid.

Let us cut this solid by a plane perpendicular to the x-axis at
a distance x from 0. In the section we get a square EFKL with
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side EF =)/ a®—x2, therefore S (x) =a?—x? and V =85 (@2 —x*)dx =
0

= 3— a?.

7.6.4. On all chords (parallel to one and the same direction) of
a circle of radius R symmetrical parabolic segments of the same
altitude h are constructed. The planes of the segments are perpen-
dicular to the plane of the circle.

Find the volume of the solid thus obtained (Fig. 89).

/Z'!/

N \ N AN/ \/(
Y WAVAY = s B 1n
15 // \\
] /
VA
0 z R z
/ A
/ - a
A 2
Fig. 89 Fig. 90

Solution. First compute the area of the parabolic segment with
base a and altitude 4. If we arrange the axes of coordinates as
indicated in Fig. 90, then the equation of the parabola will be
y=oax®*+h.

Determine the parameter «. Substituting the coordinates of the

2
point B(%, 0), we get 0=a.aT+h, whence oc=-—i—’:; hence the
equation of the parabola is y=—4a—2 x*+h, and the desired area

a a
S=2§ydx=2§(—i—2x2+h) dx= 2 ah.
0 0

Now find the volume of the solid. If the axes of coordinates are
arranged as indicated in Fig. 89, then in the section of the solid
by a plane perpendicular to the x-axis at the point with abscissa x

we obtain a parabolic segment of area S=§ah, where a =2y =
= 2}/ R? —x2. Hence,

R
s(x):gVR‘z—xehandV=55(x)dx=§h V RP—x* dx = nhR™,
-R

ot—>
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7.6.5. The plane of a moving triangle remains perpendicular to
the fixed diameter of a circle of radius a: the base of the triangle
is a chord of the circle, and its vertex lies on a straight line pa-
rallel to the fixed diameter at a distance 4 from the plane of the
circle. Find the volume of the solid generated by the movement
of this triangle from one end of the diameter to the other.

7.6.6. Compute the volume of the solid generated by revolving

about the x-axis the area bounded by the axes of coordinates and
1 1 1

the parabola x? 442 =a? -
Solution. Let us find the points of intersection of the curve and
the axes of coordinates: at x=0 y=a, at y=0 x=a. Thus, we

have the interval of integration [0, a]. 1

1\2
From the equation of the parabola we get y= <a_2_—x—2—> ; there-
fore

a a 1 l

_ a? — '2")4 _ a( % .
(5 yrdx = n§< x dx_n(S 3x -+ €Eax
1

—4a7x7+x2) dx = %na?

7.6.7. The figure bounded by an arc of the sinusoid y=sinux,

the axis of ordinates and the straight line y==1 revolves about
the y-axis (Fig. 91).

y:zf-$2+2 ‘If B

¥ y=1 \V A
o y=sinz C:

| //“

| Al | |

! . ) o

T )2 { L >z

-z Y 2 iz 2

Fig. 91 Fig. 92

Compute the volume V of the solid of revolution thus generated.

Solution. The inverse function x =arcsiny is considered on the
interval [0, 1]. Therefore

Y2
V—nszdy_nS(arCSmy)zdy

Y
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Apply the substitution arc siny=t¢. Hence

: y |t
y=sint, 0 10
dy=costdt, /2

x

2
And so, V=mn S t? cos t dt. Integrating by parts, we get y T (“24“8) .
0

7.6.8. Compute the volume of the solid generated by revolving
about the x-axis the figure bounded by the parabola y=0.25x%+2
and the straight line bx—8y+4 14=0.

Solution. The solid is obtained by revolving the area ABCA
(Fig. 92) about the x-axis. To find the abscissas of the points A
and B solve the system of equations:

{ y=72+2,
5x—8y+ 14 =:0.
Whence xA=-;—; xp=2. In our case y, (x)= —x2+2 and y, (x) =

= (5/8) x+7/4. Hence,
2
v (e 7)'= () o

7.6.9. Compute the volume of the solid generated by revolving
about the y-axis the figure bounded by the parabolas y=x? and
8x=y

Solution. It is obvious that x, () =V y>=x, (y)= —2 on the in-

terval from the origin of the coordinates to the pomt of intersec-
tion of the parabolas (Fig. 93). Let us find the ordinates of the
points of intersection of the parabolas by excluding x from the sy-

stem of equations:
y=x*
y? = 8x.
4

. 4
We obtain y, =0, y,=4. Hence, V=nS( -—g—4>dy=—5—n.
0
7.6.10. Compute the volume of the solid torus. The torus is a
solid generated by revolving a circle of radius a about an axis

lying in its plane at a distance b from the centre (b >a). (A tire,
for example, has the form of the torus.)
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7.6.11. Compute the volume of the solid obtained by revolving
about the x-axis the figure bounded by two branches of the curve
(y—x)?=x® and the straight line x=1.

7.6.12. Find the volume of the solid generated by revolving
about the line y= — 2a the figure bounded by the parabola y* = 4ax
and the straight line x=a (Fig. 94).

v N[\J 9 //‘b‘s)

Q/’Z\&//% /

B(2,4)

e
o

/ M0 z

7 -2a|CYD
64 L >z 0 2’
0 2
Fig. 93 Fig. 94

Solution. 1f we transfer the origin of coordinates into the point
0’ (0, —2a) retaining the direction of the axes, then in the new
system of coordinates the equation
of the parabola will be q

(y' — 2a)* = dax. a8

Hence y,=2a+V 4ax (for the cur-
ve 0OAB), and y,=2a—V) 4ax (for
the curve OCD). The sought-for vo-
lume is equal to -a 0 z

b

13}

V=ﬂ§(y§—y§)dX=n§[(2a+
0 0

-a
Fig. 95
7.6.13. Find the volume of the solid generated by revolving about

the x-axisthe figureenclosed by the astroid: x=acos*#; y =a sin? ¢.
Solution. The sought-for volume V is equal to double the volume

obtained by revolving the figure OAB (Fig. 95). Therefore,

+2V - 2a—2 V a0?] dx = Zaas.

V=2:rc§y2dx.



342 Ch. VII. Applications of the Definite Integral

Change the variable

xXx=acos®t, X t
= — 2 i -
dx_asitlzsc;s ¢t sin t dt, 0 |a2|

y= ’ a | 0

Hence,
0
V=2nS a?sin® ¢ (—3a cos? ¢ sin ¢) df =
n
2

T

14

T rl
=6:na3l: S sin tdt — S sin® ¢ dt :l

0

Using the formula from Problem 6.6.9 for computing the above
integrals, we get

6 4 2 8 6 4 2 32
— 3 Sl Y= X = ) =" ngd
V =6na <7 ><5 X ><7 ><5 X 3> T

3 9
7.6.14. Compute the volume of the solid generated by revolving
one arc of the cycloid x=a (¢ —sint), y=a(l—cost) about the
x-axis

7.6.15. Compute the volume of the solid obtained by revolving
about the polar axis the cardioid p=a(l 4-cos ¢) shown in Fig. 81.

Solution. The sought-for volume represents the difference between
the volumes generated by revolving the figures MNKLO and OKLO
about the x-axis (which is ths polar axis at the same time).

As in the preceding problem, let us pass over to the parametric
representation of the curve with the polar angle ¢ as the parameter:

x=pcosp=acosq(l-+cosg),
y=psing=asing (14 cose).
It is obvious that the abscissa of the point M equals 2a (the value
of x at ¢ =0), the abscissa of the point K being the minimum of

the function x=a (14 cos ¢)cose.
Let us find this minimum:
dx

o= —asing (1 4+2cos¢) =0,

(Px=0; ({)2=§ﬂ

At ¢, =0 we obtain xy =2a, at ¢,= 2 =7, xk—-——%.
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Hence, the sought-for volume is equal to

V= nS yédx—nS Yt dx.
-_f:_ -4

4

Changing the variable x=acos@ (1 4 cosg), we get

| x| x | e
y?=a* (1 +cos @)? sin? @,
dx—= —asing (1 +2cos ¢)dg, |—4 2n/3 1> |—a/4) 20/3
2a 0 0 n

Thus,

0
V=n S a*(14+cos)sin?@[—asing (14 2cos¢)] do—
2
?ﬂ

—x a? (1l +cosg)?sin?g[—asing(l+2cosg)]dp=

“lwﬁ-’ua

=na*\sin* @ (1l +cos9)?(l 4-2cosp)de =

= na® 1—u?) (14-u) (l-|—2u)du=%na3 (u =cos ¢).

]
§

7.6.16. Compute the volume of the solid bounded by:
(a) the hyperboloid of one sheet Z—:—l—-g—:——i—:=l and the pla-

nes z=—1and z=1;
(b) the parabolic cylinder z=4—y* the planes of coordinates
and the plane x=aq;

(c) the elliptic paraboloid z=2—: —|--g; and the plane z =% (k > 0).

7.6.17. A wedge is cut off from a right circular cylinder of radius
a by a plane passing through the diameter of the cylinder base and
inclined at an angle o to the base. Find the volume of the wedge.

7.6.18. Compute the volume of the solid generated by revolving
the figure bounded by the following lines:

(@) xy=4, x=1, x=4, y=0 about the x-axis;

(b) y=2x—x?, y=0 about the x-axs;
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() y=x*, y=0, x=2 about the y-axis;

(d) y=sinx (one wave), y=0 about the x-axis;

(e) x*—y*>=4, y= 42 about the y-axis;

(f) (y—a)*=ax, x=0, y=2a about the x-axis.

7.6.19. Find the volume of the solid obtained by revolving the

X3 — x4 .
>— about the x-axis.

2 a
curve y2=

7.6.20. Compute the volume of the solid generated by revolving
about the x-axis the figure bounded by the lines y=sinx and

2
y == ? X.

7.6.21. Compute the volume of the solid generated by revolving
about the x-axis the curvilinear trapezoid bounded by the catenary

y~——<e a_le 7)=acosh% and the straight lines x,=—¢, x,=
=c (¢>0).

7.6.22. Compute the volume of the solid generated by revolving
about the x-axis the figure bounded by the cosine line y= cos x and

the parabola y——x2

7.6.23. Compute the volume of the solid generated by revolving
about the x-axis the figure bounded by the circle x>+ 42=1 and
the parabola y*=

7.6.24. On the curve y=x® take two points A and B, whose
abscissas are a=1 and b=2, respectively.

Find the volume of the solid generated by revolving the curvi-
linear trapezoid aABb about the x-axis.

7.6.25. An arc of the evolute of the ellipse x=acost; y=0bsint
situated in the first quadrant revolves about the x-axis
Find the volume of the solid thus generated.

7.6.26. Compute the volume of the solid generated by revolving
the region enclosed by the loop of the curve x=at?, y—a(t—-—>
about the x-axis.

7.6.27. Compute the volumes of the solids generated by revoly-
ing the region enclosed by the lemniscate (x%4 y?)®=a?(x*—y?)
about the x- and y-axes.

7.6.28. Compute the volume of the solid generated by revolving
the region enclosed by the curve p=acos?¢ about the polar axis.
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§ 7.7. The Arc Length of a Plane Curve in Rectangular
Coordinates

If a plane curve is given by the equation y=y(x) and the
derivative y’(x) is continuous, then the length of an arc of this
curve is expressed by the integral

b

1=V Ty dx

a
where a and b are the abscissas of the end-points of the given arc.

7.7.1. Compute the length of the arc of the V M(4,8)
semicubical parabola y?> =x® between the points
(0, 0) and (4, 8) (Fig. 96).

Solution. The function y(x) is defined for
x>20. Since the given points lie in the first qu- 7l
3

adrant, y=x 2. Hence,
34/ T e 4/
y=5Vxand Vity®=1) 147

Consequently,

Fig. 96

1=j§ V 1+%xdx=§-§(1+-‘}x)%’4=%(101/ﬁ—1).
0

0
7.7.2. Compute the length of the arc cut off from the curve
y?*=x* by the straight line x=-§.

7.7.3. Compute the arc length of the curve y=Incosx between

the points with the abscissas x=0, x= % .

Solution. Since y' =—tanx, then V' 14y =) 1+ tan®x=secx.
Hence,

44

l=iI _ noox 4=ln'tan§£t.
Ssecxdx lntan(4—}-2>| 8
0 0

e* -+ 1

7 irom

7.7.4. Compute the arc length of the curve y=In
x,=a to x,=b (b>a).
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7.7.5. Find the arc length of the curve x=%y2——;-lny between

the points with the ordinates y=1 and y=2.

Solution. Here it is convenient to adopt y as the independent
variable; then

, | | T o7 _1_ _!_ 2 _1_ 1
X —_Q—y—g and V1+Xz— l/-(2y+2y) “2.’/_{—@-

Hence,
2 2
L=y TFmay=(gv+g)ds=7+5 2.
1 1

2 2 2
7.7.6. Find the length of the astroid x3 + y3 =a3.

Solution. As is known, the astroid is symmetrical about the axes
of coordinates and the bisectors of the coordinate angles. Therefore,
it is sufficient to compute the arc length of the astroid between
the bisector y=x and the x-axis and multiply the result by 8.

3

2 2

2 2\7
In the first quadrant y=<a3 —x3> and y=0 at x=a, y=x

at x= —.

o

Further,

<
I
v oo
—
Q
w|r
|
=
w|
~—
—
|
w| o
~
=
|
wl_
[
=
|
w|—
—
Q
mlm
l
b
IS
~—

and

Vity?= l/ l+x_%(a%—x—§_>=(

Consequently,

23/’

Note. If we compute the arc length of an astroid situated in
the first quadrant, we get the integral

L _1

Sa3x 3 dx,

0

whose integrand increases infinitely as x-—- 0.
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7.7.7. Compute the length of the path OABCO consisting of por-
tions of the curves y*=2x® and x>+ y*=20 (Fig. 97).

Solution. It is sufficient to compute the arc lengths j5; and Iy
since by symmetry of the figure about the

x-axis |y
[=2(l5a+ lxp)-
Solving the system of equations
X2 4 y? = 20,
{ Y =2x,
we find the point A (2, 4).
Find /4. Here
3
y=V2aox?, y=

o 14 AR VAR

Hence,

2
zovAzj V 14+ 3 vdx = 4 10V T0—1).
0

Since on the circle of radius /20 43 is the length of an arc cor-

responding to the central angle arc tan2,
Iy =V 20 arctan?.
Finally we have
=2 (10V/T0—1)+ 415 arctan2.
7.7.8. Compute the arc length of the curve:
(a) y:%-l cut off by the x-axis;

(b) y=1In(2cosx) between the adjacent points of intersection with
the x-axis.

(c) 3y*=x(x—1)*> between the adjacent points of intersection
with the x-axis (half the loop length).

7.7.9. Compute the arc length of the curve
y=%[x Ve—T—In(x+Vx—1)]

between
x=1and x=a+1.
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7.7.10. Find the arc length of the path consisting of portions of
the curves x*=(y—+1)® and y=4.

§ 7.8. The Arc Length of a Curve Represented
Parametrically

If a curve is given by the equations in the parametric form x = x (?),
y=y(t) and the derivatives x'(#), y’(¢) are continuous on the in-
terval [¢,, ¢,], then the arc length of the curve is expressed by the

integral
12

L=V O+ d,

t

where ¢, and ¢, are the values of the parameter ¢ corresponding to
the end-points of the arc (¢, < {,).

7.8.1. Compute the arc length of the involute of a circle x =
=a(cost-+tsint), y=a(sint—itcost) from t=0 to { =2mx.

Solution. Differentiating with respect to ¢, we obtain
x;=atcost, y,=atsint,
whence V x;2+ y:*=at. Hence,

2n
2n

at?
l=§atdt=7 . = 2an?.

7.8.2. Find the length of one arc of the cycloid:
x=a(t—sint), y=a(l—cos?).
7.8.3. Compute the length of the astroid: x=acos®*f, y=asin®t.
Solution. Differentiating with respect to ¢, we obtain
x; =—3acos?¢sint;

y: =3asin®f cost.
Hence

Vx:2+y;2=l/9azsin2tcoszt=3a|sintcostlz%flsin%].

Since the function |[sin2f| has a period %,

Tt
7
l=4x%5lSsin2tdt=6a.
0

Note. 1f we forget that we have to take the arithmetic value of
the root and put }/ x>+ y;* = 3asin f cos ¢, we shall obtain the wrong
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result, since

2n
a

3aSsintcostdt=%—sin2t T _0.
5 0

7.8.4. Compute the length of the loop of the curve x=1)"3¢,
y=1t—1s.

Solution. Let us find the limits of integration. Both functions
x(f) and y(¢) are defined for all values of ¢. Since the function
x=1)3t2 >0, the curve lies in the right half-plane. Since with a
change in sign of the parameter ¢, x(f) remains unchanged, while
y (t) changes sign, the curve is symmetrical about the x-axis. Furth-
ermore, the function x(f) takes

on one and the same value not L

more than twice. Hence, it follows M ==

that the points of self-intersection /2
of the curve lie on the x-axis. i.e., ¢ T

at y=0 (Fig. 98). M
The direction in which the mo-

ving point M (x, y) runs along the Fig. 98
curve as ¢ changes from —oo to oo
is indicated by the arrows.

But y=0at {,=0, ¢, ,= =41. Since x(¢,)=x ({,) =V 3, the point
(V'3, 0) is the only point of seli-intersection of the curve. Conse-
quently, we must integrate within the limits {,=—1 and {,=1.

Differentiating the parametric equations of the curve with respect
to ¢, we get x;=2) 3t, y,=1—3¢2, whence

VX2 +yt =143

Consequently,
1

1= +3mar=a
Ry

7.8.5. Compute the arc length of the curve x=t—;—, y=2——l—:-

between the points of intersection with the axes of coordinates.
2 2

7.8.6. Compute the arc length of the ellipse ’—;34—%2: 1.

Solution. Let us pass over to the parametric representation of the
ellipse

x=acost, y=bsint, 0Lt 2n.
Differentiating with respect to ¢, we obtain

x;=—asint; y;=bcost,
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whence

Vx2+yr=Va?sin®t+b2cos*f=a)/ 1 —e? cos? ¢
where ¢ is the eccentricity of the ellipse,

[4
E=—=
a a

Thus

2n

T
=a Slfl—e;?cos?tdt =4aSV1—82COStht.
b 0

t
The integral Slfl—e2 cos® fdt is not taken in elementary func-

0
tions; it is called the elliptic integral of the second kind. Putting
t=—g—-—r, we reduce the integral to the standard form:

7
l/l——ezcos?tdt-——g V T—e?sinttdr=E (g),
0

S/ w[';l

where E (e) is the notation for the so-called complete elliptic inte-
gral of the second kind.

Consequently, for the arc length of an ellipse the formula
{ =4aE (e) holds good.

It is usual practice to put e=sina and to use the tables of va-
lues for the function

E, (a) =E, (arcsine) = E (g).
For instance, if a=10 and 6=6, then

2__R2
-—‘-010—6 —0.8 —sin 53

Using the table of values of elliptic integrals of the second kind,
we find [=40E,(53°)=40x1.2776 ~51.1.

7.8.7. Compute the arc length of the curve

&=

x=1, y=7(t*=3)
between the points of intersection with the x-axis.

7.8.8. Find the arc length of the cardioid:

x=a(2cost—cos 2t),
y=a(2sint—sin 2¢).
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7.8.9. Find the length of the closed curve
x=4}2asint; y=asin2t.
7.8.10. Find the arc length of the evolute of the ellipse
x=07:—cos3 t, y=—%sin31, ¢t =a?—0bt.
7.8.11. Compute the arc length of the curve

x=(t*—2)sint 4 2¢ cos ¢,
y=(2—1?)cost-2¢tsint

between t,=0 and ¢,=um.

7.8.12. On the cycloid x=a(f{—sint); y=a(l —cost) find the
point which divides the length of the first arc of the cycloid in
the ratio 1:3.

§ 7.9. The Arc Length of a Curve in Polar Coordinates

If a smooth curve is given by the equation p=p (p) in polar
coordinates, then the arc length of the curve is expressed by the
integral:

Ps

1=y 0+ 0] do,
O,

where ¢, and ¢, are the values of the polar angle ¢ at the end-
points of the arc (g, < @,).

7.9.1. Find the length of the first turn of the spiral ot Archi-
medes p =aq.

Solution. The first turn of the spiral s tormed as the polar angle
¢ changes from 0 to 2m. Therefore

2n

2n
I=S|/a2(p2+a2dq>=ag VerF1lde=
0

0
—a [nl/4n2—|—l+%ln(2n+l/4nz+l)].

7.9.2. Find the length of the logarithmic spiral p =ae™® between
a certain poirt (p,, 9,) and a moving point (o, ).
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Solution. In this case (no matter which of the magnitudes, p or
Py, is greater!)

¢
l= S V @™ + a*m2e*™ dg | =

Do

=al 1+ m? =a K%‘ﬂf[e””f’—e”"w'>o|=

e"s do

8¢

5

1 1 2
VI g, | = LTE g,

—p—

i.e. the length of the logarithmic splral is proportional to the
increment of the polar radius of the arc.

7.9.3. Find the arc length of the cardioid p=a(l-cosep)
(@>0, 0<< << 2m).
Solution. Here p, = —asing,

Vo +0% =V 2a® (1+cos ¢) =V 4a® cos® (¢/2) =
B _ 2acos(9/2), 0o
=248 W21 ={ _qcos(g/2), ns g on

Hence, by virtue of symmetry
27

l=2aS\ ’cos—‘dcp 4a5cos—d(p 8a.
0

7.9.4. Find the length of the lemniscate p?=2a?cos2¢ between
the right-hand vertex corresponding to ¢ =0 and any point with a

polar angle ¢ < -;1

Solution. If 0T < % , then cos2¢ > 0. Therefore

= 2 2 ; ,=-—a——-—-.—l/-_25in2(p'
p=al/2cos2¢; 0y Veosog
— /) sinf2¢\ _ alV 2
V=) 2 (cos2et S =

Hence,

l—aVQSVcosmp—“V SV‘:{—‘

The latter integral is called the elliptic integral of the first kind.
[t can be reduced to a form convenient for computing with the
aid of special tables.
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7.9.5. Find the arc length of the curve p=asin3%.
7.9.6. Compute the length of the segment of the straight line
14 14
p=asec ((p—§> between ¢ =0 and =5

Solution. p;p=asec((p—%) tan (cp—%);

/

Vit =asee(v=5) )/ 1 tan (o= F) masec (4.

(The sign of the modulus in the function sec( —%) is omitted,

since on the interval [0, g-] this function
is positive.)

4
l=a_¢—sec2((p—%)d(pz‘”g§ a. C

| p=as&n‘—}’

0
7.9.7. Find the Ilength of the closed
curve p=asin‘%.

Solution. Since the function p=asin* %

is even, the given curve is symmetrical about
the polar axis. Since the function sin‘% has

Fig. 99

a period 4m, during half the period from 0 to 2m the polar radius
increases from 0 to a, and will describe half the curve by virtue
of its symmetry (Fig. 99).

Further, p;p =a sin® (¢p/4) cos (p/4) and

Vor+ 0y = V a®sin® (g/4) + a® sin® (¢/4) cos? (¢/4) = asin® (p/4),
if 0<Cop<2n.

Hence,
PR /2
l=2a g sin® (@/4) dp = 8a S sind ¢ dt =—]376a (p = 41).
0 0
7.9.8. Find the length of the curve @:%(p—i— 1/p) between p=2
and p=4.

Solution. The differential of the arc d/ is equal to

VT g VI T g 1/ oa [T
di=Vp*+p, do=V p*d¢*+dp*= |/ p (E) + ldp.
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From the equation of the curve we find d—g):% (l —ﬁ—;) . Hence,

f T(1=5Y) +1dp—f1/ (=24 +4)do=

- VT (Brm) 02

2

7.9.9. Find the length of the hyperbolic spiral pg=1 between
3
¢, =7 and ¢, =+
7.9.10. Compute the length of the closed curve p == 2a (sin ¢ 4 cos ).

7.9.11. Compute the arc length of the curve p=¢§o—s—(p from
_ It t It
¢ =7 o =75

§ 7.10. Area of Surface of Revolution

The area of the surface generated by revolving about the x-axis
the arc L of the curve y=y(x) (@< x<Cb) is expressed by the
integral

b

P=2ngyl/l +y" dx.

It is more convenient to write this integral in the form P =2n S ydl,
L

where dl is the differential of the arc length.

If a curve is represented parametrically or in polar coocrdinates,
then it is sufficient to change the variable in the above formula,
expressing appropriately the differential of the arc length (see §§ 7.8
and 7.9).

7.10.1. Find the area of the surface formed by revolving the

2 2 2
astroid x% 4+ y3 =a® about the x-axis.
Solution. Differentiating the equation of the astroid we get
1 1
2 =, 2 -=,
35 tgy ty=0
whence
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2 1

— 3 al . i1 s

Then, l/l—l—y2=‘/l +y—£=-—z. Since the astroid is sym-
x3 |x |3

metrical about the y-axis, in computing the area of the surface we

may first assume x>0, and then double the result. In other words,

the desired area P is equal to

Al E 2
S<a3.__x3

0

q R 31 1
P=2x2n5yl/l+y’2dx=4n >2a3x 3dx.
0

Make the substitution

2

2 2
ad —x38

== tz,

|-

—% x vde=2tdt, |O
a

L aif? 12
Then P = 12na3 S t‘dt=gna“.
b

7.10.2. Find the area of the surface generated by revolving about
the x-axis a closed contour OABCO formed
by the curves y=x?and x=y* (Fig. 100). g
Solution. It is easy to check that the 7f-————-———
given parabolas intersect at the points O e
(0, 0) and B (1, 1). The sought-for area C /7
P =P,+ P,, where the area P, is formed e
by revolving the arc OCB, and P, by revol- e
ving the arc OAB. L
Compute the area P,. From the equation |,
— 1 :
x=y* we get y=)x and V=5y5- g
Hence, Fig. 100

1 1
P,:anVTC ]/1 +dr=2n YV—“;i—‘ dx =
0 o

3|1 _
=Z(4x+1)7 0=%(51»’5—1).

\,
~
Nh——————— T

8

Now compute the area P,. We have y=x2, y' =2x and

1
P,=2n { » )/ T 42 dx.
0
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The substitution x=isinh t, dx=——l-coshtdt gives

2 2
Arsinh 2 Arsinh 2
Pg=-;i£ 25 sinh2tcosh2tdt:3—32(%sinh4t——t) ors" =
9V '5n 1 -
Thus,

P=P + P,= (5 V—i—l)n + 9%5_715 —él—znln(2-|—l/_5)=

67 V-gn T = m
=——48 ——3—2111 (2—{—1/-5)—?.

7.10.3. Compute the area of the surface generated by revolving:
2

(a) the portion of the curve y=Z-, cut off by the straight line

y=%, about the y-axis;

(b) the portion of the curve y*=4 -+ x, cut off by the straight
line x=2, about the x-axis.

7.10.4. Find the surface area of the ellipsoid formed by revolving
2 2
the ellipse =5 +7; =1 about the x-axis (a>b).

Solution. Solving the equation of the ellipse with respect to y
for y=0, we get
X

Y - M .
y—;l/a—x; y——7°——-‘,,a—2_—xz,
ViTyi= ) Se=nL,

a2 (a2 — x?)
Hence
a
_ by at—(a®—b%) x% ,
P=2x 5‘ ZVaz—xz VWdX—
-a
a
=V ER = (VT g 2esiney |
where the quantity e= ]/02;b2=% is the eccentricity of the
ellipse.

When b— a the eccentricity ¢ tends to zero and
lim arcsine =1
e 0 > ’
since the ellipse turns into a circle, in the limit we get the surface
area of the sphere:
P =4nat.
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7.10.5. Compute the area of the surface obtained by revolving
the ellipse 4x®+4y*=4 about the y-axis.

7.10.6. An arc of the catenary
X X
y:% <67+ e_—“-> —acosh =,

whose end-points have abscissas 0 and x, respectively, revolves about
the x-axis.

Show that the surface area P and the volume V of the solid thus

generated are related by the formula P=—2-d‘{.

Solution. Since y’ = sinh % , we have V' T+ y”* =cosh % . Therefore
X X X
P=2nSyl/1 —l—y'%ix:QcmScosh2 % dx:%-nga‘lcosh‘2 %dx,
0 0 0
but

X

ﬂ§a2cosh2§dx=n5y2dx=V,
0

hence, P.—_Q—:.

7.10.7. Find the area of the surface obtained by revolving a loop
of the curve 9ax? =y (3a—y)* about the y-axis.

Solution. The loop is described by a moving point as y changes
from O to 3a. Differentiate with respect to y both sides of the
equation of the curve:

18axx’ = (3a—y)>*—2y (3a—y) =3 (3a—y) (a—y),

Ba—y @y Using the formula for computing the

area of the surface of a solid of revolution about the y-axis, we have

whence xx’ ==

Y2 Uy
P=2n5 xV1 +x"2dy= 2315 Vx2+(xx’)2dy=

Y Yy
' 3a ' 3a

30— )2 (3a—1)? (a— )2
=27 g ]/y( aga 9 —{—( = Lgﬁa(za 9) dy =%5 (3a% -+ 2ay —
0 0

—y?) dy = 3na?.
7.10.8. Compute the area of the surface generated by revolving
the curve 8y%= x>—x* about the x-axis.

7.10.9. Compute the area of a surface generated by revolving
about the x-axis an arc of the curve x=t¢?; y—_—%(tz—S) between

the points of intersection of the curve and the x-axis.
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Solution. Putting y=0, find {, =0 and ¢, —:tl/3 and, hence,
% =0 and x, ;=3. Whence it follows that the curve intersects
with the x-axis at two points: (0, 0) and (3, 0). When the para-
meter ¢ changes sign, the sign of the function (x)¢ remains unchan-

ged, and the function y (f) changes
4 its sign, which means that the curve
1 m is symmetrical about the x-axis
(Fig. 101).
NGB To find the area of the surface it
i is sufficient to confine ourselves to
the lower portion of the curve OnB
-1k n that corresponds to the variation
of the parameter between O and

Fig. 101 + V3. Differentiating with respect
to £, we find

x; =2t yy=1*—1

)
b N
N
o

and the linear element ‘
dl =V x4y dt = (1 +¢2) dt.

Hence,
t,
P=2x{|y)|V P Tyrdt =
:}3— Vs
= 2 (t2—3)(l+t2)dt=——n5(t5 913 —3¢)dt = 3.

7.10. 10 Compute the surface area of the torus generated by re-
volving the circle x2(y—0b)?=r2(0 < r < b) about the x-axis.

Solution. Let us represent the equation of the circle in parametric
form: x=rcost; y=>b-rsint.

Hence

X =—rsint; y;=rcost.
The desired area is
27

P=2n{ (b+rsint) )/ (—rsiniP+(rcosi)Pdi =

2N
=2aur { (04 rsint)dt =4dmbr,
0
7.10.11. Compute the area of the surface formed by revolving
the lemniscate p =a)/cos2¢ about the polar axis.
Solutzon Real values for p are obtained for cos2¢ >0, i. e. for

— <(p 4 (the right-hand branch of the lemniscate), or for
—3« <q><—§:-:rc (the left-hand branch of the lemniscate).
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The linear element of the lemniscate is equal to

VT o dey — 2 asin2¢ \? , _  adg
dil =V p*+p"dg ]/a cosQ(p—}—(VCOSQ(P) do Veese

Besides, y=p sin ¢ =asin¢}/ cos 2¢.
The sought-for surface area P is equal to double the area of the
surface generated by revolving the right-hand branch. Therefore

K

pP—2 jdl .4 25 VcosQ(psm(pdcp 2 7).
><2nLy na Ve =2na? (2—12)

7.10.12. Compute the area of the surface formed by revolving
about the straight line x4 y =a the quarter of the circle x4 y* =a?
between A (a, 0) and B (0, a).

Solution. Find the distance MN from the moving point M (x, y),
lying on the circle x*+y*=a?, to the straight line x+y=a:

|x+ Va2—x2—a| _ x+Va—x2—a
Ve Ve '

since for the points of the circle that lie in the first quadrant
x+y>=a. Further,

MN =

adx

A=V TT g dy = ]/1+(Va2_xz> T

Hence,

a
pP—29 5 x+ Va2—_x2—a . adx —
" V2 Va—x

0

=§[_f‘z _ -3‘_]“=“_"f_4—.
V2na |—Va@—x+x—aarcsin= ) V2( )

7.10.13. Compute the area of
the surface formed by revolving
one branch of the lemniscate p=

=a )/ cos2¢ about the straight line _

11
¢=7-
Solution. From the triangle OMN Fig. 102
(Fig. 102) we find the distance MN '
of an arbitrary point M of the right-hand branch from the

. . 1
axis of revolution ¢=—:

MN =psin (%—-(p) =a]/c032cp sin (%—q}) ;
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then
dl =292
V cos 2¢
n/a d
Therefore P =2n j/ al/ cos 2¢ sin (%—cp) Vacoqu) = 2mna?.
—-I/4

7.10.14. Compute the area of the surface formed by revolving

about the x-axis the arc of the curve y=%J between x=—2 and

x=2.
7.10.15. Compute the area of the surface generated by revolving
one half-wave of the curve y=sinx about the x-axis.

7.10.16. Compute the area of the surface generated by revolving
about the y-axis the arc of the parabola x* =4ay between the points
of intersection of the curve and the straight line y=3a.

7.10.17. Find the area f the surface formed by revolving about
the x-axis the arc of the curve x=e'sint; y=efcost between

t=0 and t*f-

7.10.18. Compute the area of the surface obtained by revolving
3

about the x-axis the arc of the curve x_.t?, Y= 4——’— between
the points of its intersection with the axes of coordmates

7.10.19. Compute the area of the surface generated by revolving
the curve p=2asin¢ about the polar axis.

7.10.20. Compute the area of the surface formed by revolving
about the x-axis the cardioid

x=a(2cost—cos2t),

y=a(2sint—sin2¢).

§ 7.11. Geometrical Applications of the Definite Integral

7.11.1. Given: the cycloid (Fig. 103)
x=a(t—sint); y==a(l—cost); 0Lt 2m.
Compute:
(a) the areas of the surfaces formed by revolving the arc OBA
about the x- and y-axes;
(b) the volumes of the solids generated by revolving the figure 0BAO
about the y-axis and the axis BC;

(c) the area of the surface generated by revolving the arc BA
about the axis BC;
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(d) the volume of the solid generated by revolving the figure
ODBEABO about the tangent line DE touching the figure at the

vertex B; y

(e) the area of the surface formed by p B E
revolving the arc of the cycloid [see
item (d)].

Solution. (a) When revolving about z
the x-axis the arc OBA generates a sur- 0 ¢ 4
face of area Fig. 103

27

Px:2nj ydl=2n5 a(l—cos t)2asin—;—dt=
0

L
2n

= 8a2:rcj sin® %dt =

0

64ra?
3 -

When revolving about the y-axis the arc OBA generates a sur-
face of area

P,=2n del =4nazj(t—sin ¢)sin %dt +
L b
27T 27

+ 4na? g (¢ —sin t)sin—%dt =4na2j (t—sint) sin%dt = 16m2a2.
n 0

(b) When revolving about the y-axis the figure OBAO generates
a solid of volume

2a 2a 2a
Vy=ng (x%—x%)dy=ng xidy—n S xdy,
0 0 0

where x=x, (y) is the equation of the curve BA, and x=x,(y) is
the equation of the curve OB.

Making the substitution y=a(l—cost), take into consideration
that for the first integral ¢ varies between 2m and m, and for the
second integral between 0 and m. Consequently,

v 14
V,=n SaZ(t—sint)zasintdt_nOSaZ(t—sin fPasmitdl =

21
0

—na* { (¢t —sint)sintdt =

27

0 0 0
:nan[g tsintdi—§ t(1—cos2tydt+ § sinstdt]=6n3a3.

J27 2n 2n
For computing the volume of the solid obtained by revolving
the figure OBAO about the axis BC it is convenient first to trans-
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fer the origin into the point C, which yields the following equa-
tions in the new system of coordinates

xX'=a(t—n—sint); y =a(l—cosf).
Taking into account only the arc BA, we get

2a 7
V=n{ x2dy —=aas { (t—n—sintpsintdt.
0 2n
Putting {—n =2, we obtain
0 ¢
V=—na® S (z+sinz)?sin zdz = na® S (z+sinz)?sin zdz =
s 0

=2 (9m—16).
(c) Making the above-indicated shift of the origin, we get

dl = 2asm—[dt|——2asm —dt

Therefore
2a

P= anxdl —4na2S(t—n—smt)sm—dt_
0 n
=4nazj(z—|— sinz)cos%dz=4(2n——§) nad.
0

(d) Transferring the origin into the point B and changing the
direction of the y-axis, we get

¥'=a(t—mn—sint), y =a(l-+tcost).
Putting { —n =2, we have
x'=a(z+sinz), y =a(l—cosz),

z changing from —mn to n for the arc OBA. Hence
V=n S a® (1 —cos 2)?(1 -+ cos 2) dz = n2a®.
-7

(e) P=2n j ydl =4na? X (l-—cosz)cos dz :%Qnaz
-7 -

7.11.2. Find the volume of the solid bounded by the surfaces
22=8(2—x) and x*+y*=2x.

Solution. The first surface is a parabolic cylinder with generat-
rices parallel to the y-axis and the directrix 22=8(2—x) in the
plane xOz, and the second is a circular cylinder with generatrices



§ 7.11. Geometrical Applic’s of the Definite Integral 363

parallel to the z-axis and the directrix x? 4 y? =2x in the plane xOy.
2

The volume V is computed by the formula V = S S(x)dx. S(x) re-

0
presents the area of a triangle whose base is equal to 2y and alti-
tude to 2z:

S(x)=2yx22=4V2x—x* V'8 (2 —x).
Hence,
2

v={4yx@—08@—0dr=4V8 {@—x) V¥ dx =
0 0
=4V8_(—§-2V}3—%V;?>

7.11.3. Prove that if the figure S is bounded by a simple con-
vex contour and is situated between the ordinates y, and y, (Fig. 104),
then the volume of the solid ge- y
nerated by revolving this figure
about the x-axis can be expressed p

by the formula ‘I y 5/ \C
[ \

2 _ 256
o 15°

Ya

by
V=2n\ yhdy, 7
§l I |

where
h=x,(y)—x,(y),

x=x, (y) being the equation of the 4
left portion of the contour and z
x=1x,(y) that of the right portion. g
Solution. Let the generating fig- Fig. 104

ure S be bounded by a simple

convex contour and contained between the ordinates y, and y,.
Subdivide the interval [y,, y,] into parts and pass through the
points of division straight lines parallel to the axis of revolution,
thus cutting the figure S into horizontal strips. Single out one
strip and replace it by the rectangle ABCD, whose lower base is
equal to the chord AD=h specified by the ordinate y, its altitude
AB being equal to Ay. The solid generated by revolving the rectangle
ABCD about the x-axis is a hollow cylinder whose volume may
be approximately taken for the element of volume

AV = 1 (y + Ay)? h— ny*h = 2nyAyh + nh (Ay)®.

Rejecting the infinitesimal of the second order with respect t> Ay,
we get the principal part or the differential of volume

dV =2n yhdy.
Knowing the differential of the volume, we get the volume proper
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through integration:
Y2
V=2n g yhdy.

Y1

Thus, we obtain one more formula for computing the volume of
the solid of revolution.

7.11.4. The planar region bounded by the parabola y=2x*+-3,
the x-axis and the verticals x=0 and x=1 revolves about the
y-axis. Compute the volume of the solid of revolution thus generated.

Solution. Divide the area of the figure into elementary strips by
straight lines parallel to the y-axis. The volume AV of the elemen-
tary cylinder generated by revolving one strip is

AV =n (x4 Ax)? y—n xty = 2n xy Ax - ny (Ax)?,

where Ax is the width of the strip.
Neglecting the infinitesimal of the second order with respect to Ax,
we get the diflerential of the desired volume

dV =2nxydx.
Hence
1 1
V= S 2n xydx=2n Sx(2x3—|—3)dx=4n.

0 0

7.11.5. Compute the area of the portion of the cylinder surface
z x*+4 y*=ax situated inside the
sphere

X442 =at

Solution. The generatrices of the

cylinder are parallel to the z-axis,

2

the circle (x—% s y=5

serving as directrix (Fig. 105

g Shows a quarter of the sought-
for surface).

Subdivide the portion of the

il circle shown in Fig. 105 into

small arcs Al. The generatrices

Y passing through the points of di-
Fig. 105 vision cut the cylinder surface

into strips. If infinitesimals of
higher order are neglected, the area of the strip ABCD is equal to
CD- Al

If p and ¢ are the polar coordinates of the point D, then
p=acosq and CD-=) a*—p?*=asing, and Al=a-Ag, whence we



§ 7.11. Geometrical Applic’s of the Definite [ntegral 365

find the element of area:

dP =a?*sin ¢ de.
Hence,

i
2

P=4{ a*singdp=4a>.

7.11.6. Find the area of the surface cut off from a right circular
cylinder by a plane passing through the diameter of the base and
inclined at an angle of 45° to
the base.

Solution. Let the cylinder axis
be the z-axis, and the given dia-
meter the x-axis. Then the equa-
tion of the cylindrical surface
will be x2+44?>=a®, and that of
the plane forming an angle of 45°
with the coordinate plane xOy
will be y==z.

The area of the infinitely nar-
row strip ABCD (see Fig. 106) will Fig. 106
be dP =zdl (accurate to infinite-
simals of a higher order), where dl is the length of the elemen-
tary arc of the circumference of the base.

Introducing polar coordinates, we get

z=y=asing; dl=ade.
Hence dP =a?singpdg and
n

P=a? S sin @ dp =a? [— cos @] = 2a2.
0
7.11.7. The axes of two circular cylinders with equal bases inter-
sect at right angles. Compute the surface area of the solid constitu-
ting the part common to both cylinders.

7.11.8. Compute the volume of the solid generated by revolving
about the y-axis the figure bounded by the parabola x2=y—1, the
axis of abscissas and the straight lines x=0 and x=1.

7.11.9. Find the area S of the ellipse given by the equation
Ax* +-2Bxy+4-Cy>=1(8=AC—B> > 0; C>0).
Solution. Solving the equation with respect to y, we get
—Bx—V C— dox* —B C—dx?
go——tmVeode,,  ber VOobe
where the values of x must satisfy the inequality
C—6x2=0.
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Solving this inequality, we obtain the limits of integration:
Y Eesy %
Consequently, the sought-for area is equal to

VE VE

(Y2—Yy) dx=% 5 V' C—6xdx =

]/? J Vs
2

7.11.10. Find the areas of the figures bounded by the curves rep-
resented parametrically:

(a) x=2t—1¢% y=2{2—13

e (11—

(b) x_1+12) - l—|—lz .

7.11.11. Find the areas of the figures bounded by the curves given

in polar coordinates:
(a) p=asin3¢ (a three-leaved rose);

) ==L |5 <o< T

—cos @

S

(c) p=3sing and p=1V} 3cosgq.
7.11.12. Find the arc length of the curve y2=%(2—-x)3 cut off

by the straight line x=—1.
7.11.13. Find the length of the arc OA of the curve

a?
y:alnaz_xz ’

where O (0, 0); A(—;—, aln%y
7.11.14. Compute the arc length of the curve yzz—g—()c——l)3 con-

tained inside the parabola y2=%.
7.11.15. Prove that the length of the ellipse
x=V2sint; y=-cost
is equal to the wavelength of the sinusoid y=sinx.
7.11.16. Prove that the arc of the parabola y:%)x2 correspon-

ding to the interval 0<{x<Ca has the same length as the arc of

the spiral p= Pg¢ corresponding to the interval 0<{p <Ca.
7.11.17. Find the ratio of the area enclosed by the loop of the

curve y= -4 i—x l/; to the area of a circle the circumference

3
of which is equal to the length of the contour of this curve.
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7.11.18. Find the 2vo]ume of the segment cut off from the ellipti-
2
cal paraboloid Qy—p+%7-=x by the plane x=a.

7.11.129. Ccznnpute the volume of the solid bounded by the hyper-
2
boloid %—}—%——C%:—l and the planes z=c¢ and z=1I[>c.

7.11.20. Find the volume of the right elliptical cone whose base
is an ellipse with semi-axes a and b, its altitude being equal to .

7.11.21. Find the volume of the solid generated by revolving
about the x-axis the figure bounded by the straight lines y=x+41;
y=2x-+1 and x=2.

7.11.22. Find the volume of the solid generated by revolving
2 2
about the x-axis the figure bounded by the hyperbola Z—%; =1,
the straight line 2ay—bx=0 and the axis of abscissas.

7.11.23. Find the volume of the solid generated by revolving the
curve p=acos®¢ about the polar axis.

7.11.24, Find the areas of the surfaces generated by revolving the
following curves:

(a) y=tanx<0<x<-’;—) about the x-axis;

(b) y=x %(ngga) about the x-axis;
(c) x*+y*—2rx=0 about the x-axis between 0 and h.

§ 7.12. Computing Pressure, Work and Other Physical
Quantities by the Definite Integrals

I. To compute the force of liquid pressure we use Pascal’s
law, which states that the force of pressure of a liquid P on
an area S at a depth of immersion & is P=+hS, where y is the
specific weight of the liquid.

I1. If a variable force X ={ (x) acts in the direction of the x-axis,
then the work of this force over an interval [x,, x,] is expressed
by the integral

A= S f (x) dx.

Xy

[II. The kinetic energy of a material point of mass m and velo-
city v is defined as

mu?
K="
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IV. Electric charges repulse each other with a force F=er‘—§2,
where e, and e, are the values of the charges, and r is the distance
between them.

Note. When solving practical problems we assume that all the
data are expressed in one and the same system of units and omit
the dimensions of the corresponding quantities.

7.12.1. Compute the force of pressure experienced by a vertical
triangle with base 6 and altitude A submerged base downwards in
water so that its vertex touches the surface of the water.

Solution. Introduce a system of coordinates as indicated in Fig. 107
and consider a horizontal strip of thickness dx located at an arbi-
trary depth x.

Assuming this strip to be a rectangle, find the differential of area
dS= MN dx. From the similarity of the triangles BMN and ABC

we have MN_ x whence MN=% and dS:%dx.

b R
0 B
T =Y 70
z T A20HE 8
M N L T N
dzx h M 7] L’.
0V /C T
— e—1 5p ]
V
/4
Fig. 107 Fig. 108

The force of pressure experienced by this strip is equal to dP =xdS
accurate to infinitesimals of higher order (taking into consideration
that the specific weight of water is unity). Consequently, the entire

force of water pressure experienced by the triangle is equal to
h h

P=| xdS= | wrdx=-goh.
0 0
7.12.2. Find the force of pressure experienced by a semicircle of

radius R submerged vertically in a liquid so that its diameter is
flush with the liquid surface (the specific weight of the liquid is v).

7.12.3. A vertical dam has the form of a trapezoid whose upper
base is 70 m long, the lower one 50 m, and the altitude 20 m.
Find the force of water pressure experienced by the dam (Fig. 108).

Solution. The differential (dS) of area of the hatched figure is
approximately equal to dS=MN dx. Taking into consideration the
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similarity of the triangles OML and OAE, we find %=2023x;
whence ML =20—x, MN =20—x4-50=70—x. Thus, dS=MN x
xdx= (70— x)dx and the differential of the force of water pressure is
equal to

dP = xdS = x(70—x) dx.

Integrating with respect to x from 0 to 20, we get
20

P=| (T0x—x*)dv=11333 .
7.12.4. Calculate the work performed in pumping the water out
of a semispherical boiler of radius R.

7.12.5. A rectangular vessel is filled with equal volumes of water
and oil; water is twice as heavy as oil. Show that the force of pres-
sure of the mixture on the wall will )
reduce by one fifth if the water is ——y
replaced by oil.

Solution. Let h be the depth of
the vessel and / the length of the 4
wall. Let us introduce a system of 2

I
h

coordinates as shown in Fig. 109.
Since the oil is situated above the
water and occupies the upper half of *

the vessel, the force of the oil pres-

sure experienced by the upper half «

of the wall is equal to Fig. 109

T
P,=%jxl dx=l{é—2.
0
The pressure at a depth x>% is made up of the pressure of the
oil column of height g—l and that of the water column of height
x—%, and therefore
dP,= [%x—gl——l- <x——g>] ldx= (x—-%) ldx.

Consequently, the force of pressure of the mixture on the lower half
of the wall is

szg’z z(x-%>dx=—.
‘n
)
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The entire pressure of the mixture on the wall is equal to

1h? 2
P=pP 4P, =" D,
If the vessel were filled only with oil, the force of pressure P on
the same wall would be
lh?

h
L s‘xldx=——.

P=?u )
0

Hence,
5 1 1
P——P=l—élh2=§ P.

7.12.6. The electric charge E concentrated at the origin of coor-
dinates repulses the charge e from the point (a, 0) to the point (b, 0).
Find the work A of the repulsive force F.

Solution. The differential of the work of the force over displace-

ment dx is dA=Fdx— %Ez—dx.
Herce

b

A=eESZ—§=eE <%—

a

L
)

As b— oo the work A tends to %E

7.12.7. Calculate the work performed in launching a rocket of
weight P from the ground vertically upwards to a height A.

Solution. Let us denote the force of attraction of the rocket by
the Earth by F, the mass of the rocket by mpg, and the mass of
the Earth by mg. According to Newton’s law

mpmpg
F=k"8

where x is the distance between the rocket and the centre of the
Earth. Putting kmpmg=K, we get F(x)=x—l.<3, R<x<h+R,
R being the radius of the Earth. At x= R the force F(R) will be
the weight of the rocket P, i.e. F(R)zpz,%, whence K — PR?
and F(x)= Px—}fz.

Thus, the differential of the work is

dA=F () dx = 2R dx,
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Integrating, we obtain
R+h R+h
A= S F(x)dx= PRe S %:%.
R

The limit 11mA(h)_ 11m R-|-h“PR is equal to the work performed

h—~
by the rocket engine to achleve complete escape of the rocket from
the Earth’s gravity field (the Earth’s motion is neglected).

7.12.8. Calculate the work that has to be done to stop an iron
sphere of radius R rotating about its diameter with an angular ve-
locity o.

Solution. The amount of required work is equal to the kinetic
energy of the sphere. To calculate this energy divide the sphere
into concentric hollow cylinders of thickness dx; the velocity of the
points of such a cylinder of radius x is wx.

The element of volume of such a cylinder is dV =4nx )/ R* — x* dx,
the element of mass dM = vydV, where y is the density of iron, and
the differential of kinetic energy dK =2mywx® )/ R®— 42 dx.

Hence,

R
K = 2aye? SxaV-——Rz_xz dx=4m;R3 '(ozst=M(1‘)_‘zR2.
5 9]

7.12.9. Calculate the kinetic energy of a disk of mass M and ra-
dius R rotating with an angular velocity @ about an axis passing:
through its centre perpendicular to its plane.

7.12.10. Find the amount of heat released by an alternating si-
nusoidal current

I=1,sin (2—;-t—-cp)
during a cycle T in a conductor with resistance R.

Solution. For direct current the amount of heat released during
a unit time is determined by the Joule-Lenz law

Q=0.24 I*R.
For alternating current the differential of amount of heat is
dQ =0.24 I* ({) R dt, whence

Ly

Q=0.24R { 12 dt.
3
In this case
T

Q=0.24 R’I;;’Ssin2 <QTR t__(p) dt —

0
21
sin?| =1{—o
=0.12R1§[1—%——<T——-———)] .

— 0.12RT[2.
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7.12.11. Find the pressure of a liquid of specific weight d on a
vertical ellipse with axes 2a and 2b whose centre is submerged in
the liquid to a level h(hZ=0b).

7.12.12. Find the pressure of a liquid of specific weight d on the
wall of a circular cylinder of base radius r and altitude A if the
cylinder is full of liquid.

7.12.13. Calculate the work performed to overcome the force of
gravity in pumping the water out of a conical vessel with the vertex
downwards; the radius of the cone base is R and its altitude is H.

7.12.14. Compute the work required to stretch a spring by 6 cm,
if a force of one kilogram is required to stretch it by 1 cm.

§ 7.13. Computing Static Moments and Moments of
Inertia. Determining Coordinates of the
Centre of Gravity

In all problems of this paragraph we will assume that the mass
is distributed uniformly in a body (linear, two- and three-dimensional)
and that its density is equal to unity.

1. For a plane curve L the static moments M, and M, about
the x- and y-axis are expressed by the formulas

M,=Syd, M,={xa.

L L

The moment of inertia about the origin of coordinates

lo={ (et g .
L
If the curve L is given by the explicit equation y=y(x) (@< x<?),
then d! has to be replaced by V' 1+y'?dx in the above formulas.

If the curve L is given by the parametric equations x=x(¢),
y=y(t)(t,<<t<t,), then dl should be replaced by V x2+y'2dt in
these formulas.

2. For the plane figure bounded by the curves y =y, (v), y =y, (%),
y, (x) < y,(x) and the straight lines x=a, x=b6 (a<<x<<{b) the
static moments are expressed by the formulas

b

b
|
szis (y:—y?) dx; My:Sx(yz—yl)dx‘

a

3. The centre of gravity of a planc curve has the following coor-

dinates: xc=—l-i', Ye=—7-, where [ is the length of the curve L.
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M
The centre of gravity of a plane figure has the coordinates: xc:—s—",

X

yc=MS—-, where S is the area of the figure.

7.13.1. Find the static moment of the upper portion of the ellipse
X y:
atw=l
about the x-axis.
Solution. For the ellipse

ydl=yV 1+y2dx=Vy+(yy') dx;

since yz—_—bz—%x" and yy':—%x, we have
2 4 —_—
ydl = ]/ b? —%xz—i—%x?dx =%l/a‘2—a32x2 dx,
. - . Va—p
where ¢ is the eccentricity of the ellipse, €= - .

Integrating from —a to a, we find
a a
Mx=—g— ( l/az—szxzdxzi—bSl/az—azx‘zdx=
ga 0

=—Z— <a l/az—ezaz—l-%iarc sin s) =b <b+ % arc sine).

In the case of a circle, i. e. at a=b, we shall have M, = 2a?,
since e=0 and lim Z508 — 1,

g0

7.13.2. Find the moment of inertia of a rectangle with base & and
altitude & about its base.

Solution. Let us consider an elementary strip of width dy cut
out from the rectangle and parallel to the base and situated at
a distance y from it. The mass of the strip is equal to its area
dS=bdy, the distances from all its points to the base being equal
to y accurate to dy. Therefore, dJ,=by*dy and

h

; bh3
Ingbyzdyz—s—.
0

7.13.3. Find the moment of inertia of an arc of the circle x>+ 42 = R?
lying in the first quadrant about the y-axis.

7.13.4. Calculate the moment of inertia about the y-axis of the
figure bounded by the parabola y? == 4ax and the straight line x--a.

Solution. We have dl, = x*dS, where dS is the area of a vertical
strip situated at a distance x from the y-axis (Fig. 110):

dS =2 |y|dx==2} 4axdx.
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Hence,

a a5
I,C=S4x2 Vaxdx=4V"a gx'?dnga‘.
0 0

7.13.5. In designing wooden girder bridges we often have to deal
with logs flattened on two opposite sides. Figure 111 shows the
J cross-section of such a log. Determine the
4 moment of inertia of this cross-section

about the horizontal centre line.

§
87
%
T=0q Yy
as.
_ 45
7 N
@ 0

\
Fig. 110 Fig. 111

Solution. Arrange the system of coordinates as is shown in the
accompanying drawing. Then
dl,=y?dS, where dS= MN dy=2xdy=2V R*—y* dy.
Whence

h h

=25 pVR—pdy=4§pVR—=pay.
-h 0

Substituting y=Rsin#; dy=Rcostdt; ¢t,=0; t,=arcsin(h/R),
we cet
h arc sin (h/R)
Ix:4gy“l/R2—y2dy=4 V R2sin?{-Rcos¢R cost df =
0 b

0
arc sin (h/R) arc sin (h/R)

. R4

=4R* S sin®fcos® tdt =— g (1 —cos 4f)dt =
0

4 . h h e
%arcsm?—l——E(th—R?)VRz——h?.
When A= R, we obtain the moment of inertia of the circle
TR
3

about one of its diameters: /, =
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7.13.6. Find the moment of inertia about the x-axis of the figure
bounded by two parabolas with dimensions indicated in Fig. 112.
Solution. Arrange the system of coordinates as shown in Fig. 112
and write the equations of the para-

bolas. 2
The equation of the left parabola is: yz=2%(z+%)
yzzg—z<x-{——;—> , the equation of the s
. b [ a ML7225N
right parabola, y2=2—a<—2——x>. y
For the hatched strip the moment & ~ 7 - z
of inertia is "7 A
dl,=y*dS=y*| MN |dy, L
where
PITERYTEE PA N
=a—gy2. Fig. 112
Hence,
" 4a ¥4 4a ab3
I, = S y? (a—b—2y2)dy=2 S\ y? (a—-5—2y2> dy =55 -
-b2 0

7.13.7. Find the static moments about the x- and y-axis of the
arc of the parabola g2 =2x between x=0 and x=2 (y > 0).

7.13.8. Find the static moments about the axes of coordinates
of the line segment %—l—%:l whose end-points lie on the coordi-
nate axes.

7.13.9. Find the static moment about the x-axis of the arc of

the curve y=cosx between x1=—-—;£ and x2=—g-.

7.13.10. Find the static moment about the x-axis of the figure
bounded by the lines y==x%; y=J x.

7.13.11. Find the moments of inertia about the x- and y-axis of
the triangle bounded by the lines x=0, y=0 and —z——{—%= l(a>0,
b>0).

7.13.12. Find the moment of inertia of the trapezoid ABCD about

its base AD if AD=a, BC=0b and the altitude of the trapezoid
is equal to A.

7.13.13. Find the centre of gravity of the semicircle x*+ y*—=a?
situated above the x-axis.

Solution. Since the arc of the semicircle is symmetrical about the
y-axis, the centre of gravity of the arc lies on the y-axis, i. e. x,=0.
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To find the ordinate y,, take advantage of the result of Problem

7.13.1: M, =2a? therefore yczgé;—z:%a. Thus, x,.=0, y,= 2“.

7.13.14. Find the coordinates of the centre of gravity of the ca-
tenary y=%(e”—|—e‘”)=coshx between A (0, 1) and B (a, cosha).
Solution. We have

dl = [/l—1-y"’dx=V1+sinh2£dx=coshxdx

whence we find
= Sdl = S cosh x dx =sinha.
L 0
Then

M,= § xdl=§xcoshxdx=xsinhxl:—og sinh xdx =
=asinha—cosha+ 1.

Hence,
_asinha—(cosha—1)_~ cosha—1__ —tanh <

e sinha - sinh a

Analogously,

I a
— _ 2 __ ! _
Mx—§ydl—§cosh xdx= §(l+cosh2x)dx

| sinh 2x smh2a
“‘?("‘*‘ ) >o Tt
sinh 2a
_—+ _a +cosha
Ye = smha " 2sinha 2

7.13.15. Find the centre of gravity of the first arc of the cycloid:
x=a(t—sint), y=a(l—cost) (0Lt < 2n).

Solution. The first arc of the cycloid is symmetrical about the
straight line x=ma, therefore the centre of gravity of the arc of
the cycloid lies on this straight line and x,=ma. Since the length
of the first arc of the cycloid { =8a, we have

2n 2n

yc:_i‘gydlzgl"iQaZS (1—cos t)sin—é—dt =%5 sin3—t2—dt=—
L 0 0

7.13.16. Determine the coordinates of the centre of gravity of the

Y
portion of the arc of the astroid x* 4y* a‘ situated in the first
quadrant.
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7.13.17. Find the Cartesian coordinates of the centre of gravity of
the arc of the cardioid p=a(1-cos¢) between ¢ =0 and ¢ =m.

Solution. Let us represent the equation of the cardioid in para-
metric form:

x=pcosg=a(l-+cosq)cosqp;
y=psing=a(l4cosg)sineg.

As the parameter ¢ varies between 0 and n the running point describes
the upper portion of the curve. Since the length of the entire car-
dioid equals 8a and

dl =V (x' ) +(y',)* do = 2acos gdcp (see Problem 7.9.3), we have

a
X, = l‘s (asm(p +c09cp)2acos de =
L tay
n
:Qaic %mn—dq)——%acoss%;:%a.
0
Analogously,
l n
yc=4—a§xdl S‘acoscp 1+coscp)2acos—d(p~
L

n
= aS C()S(pCOS3%d(p_—_aS (2(:055% — cos? %) d(P.
0 0

Putting %:t we get (see Problem 6.6.9)

U
2
y.=2a 5 (2cos* t—cos*t)dt = 4a§l—§—2a%=%a.
0
And so, xc=yc=4—g.

It is interesting to note that the centre of gravity of the above-
considered half of the arc of the cardioid lies on the bisector of
the first coordinate angle, though the arc itself is not symmetrical
about this bisector.

7.13.18. Find the centre of gravity of the figure bounded by the
ellipse 4x*+49y? =36 and the circle x*+ 4> =9 and situated in the
first quadrant (Fig. 113).
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Solution. Let us first calculate the static moments:
3 3

My——-j‘x(yz—yl)dx:jx [l/m—%l/@_:—xz] dx =
0

0

i
ol — o
=
~
©
|
=
132
&
l
»

The area of a quarter of a circle of
radius 3 is equal to 9_4:; ,and the area of a
quarter of an ellipse with semi-axes a=3
and b=2 equals 37“, therefore the area
of the figure under consideration is
S— 9n 3n_ 3n

4 2 4

My
S

4L, M ®
0

Yoe=FTwr YeTT T

7.12.19. Find the centre of gravity of the figure bounded by the
i 1 1
parabola x2 +y2? =a? and the axes of coordinates.

7.13.20. Find the Cartesian coordinates of the centre of gravity
of the figure enclosed by the curve p=acos®¢ (a > 0).
Solution. Since p>=0 in all cases, the given curve is traced

when ¢ changes from —% to % By virtue of evenness of the fun-
ction cos¢ it is symmetrical about the polar axis and passes through
the origin of coordinates at ¢ = i%.

Compute the area S of the figure obtained:

1
2

n a
: r Ix3x5 5
2 2 6 g I XOX n 2
S=2x St;p dp=a §COS edp=a 5516 X 7 =33 @
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Now arrange the axes of coordinates as shown in Fig. 114. Then
the parametric equations of the curve are

X=pCcos @ =acos! g,
y=psin@=asin g cosiyp.

The centre of gravity of the figure lies on the x-axis, i.e. y. =90
by virtue of symmetry about the x-axis. Finally, determine x,:

a
2 S xy dx
8a3
S

3
cost® gpsin®pdg = %—

&
l
I

(cost® ¢ —cost? g) dg =

o0l a
of—>m0)a

_ 8a IX3X5XTX9 — Ix3X5X7x9X!! r_2,
T (5/32) ma? \2X4X6X8X10  2x4x6x8x10x12/2 T 40"

i |
1S
Y
&
=
QST ISY IR
o
a
H

Fig. 114 Fig. 115

7.13.21. Find the coordinates of the centre of gravity of the
figure bounded by the straight line y=%x and the sinusoid
y=sinx (x>=0) (Fig. 115).

Solution. The straight line y———%x and the sine line y =sin x inter-

sect at the points (0, 0) and (—g—, l). The area of the figure
bounded by these lines is

S=

( . 2 ) 4—n
sinx ——=x) dx= .
n 4

ol—0a
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Hence,
i
o
—1—S<sin2x-—4—_,x2>dx T
2 2 0 2
Xp= —2 T =4_nS(sin2x—R?x2>dx=
T 0
T
2
2 1 sin2x 4 =
T4—n |2 4 3n2 T6(4—m)?

I
2
S‘ xsinxdx—
0

a

7
. 8 Sx'ld 4 . 12—n?
T@d—n) Sl S Y7 Sy S T o
0

7.13.22. Prove the following theorems (Guldin’s theorems).

Theorem 1. The area of a surface obtained by revolving an arc
of a plane curve about some axis lying in the plane of the curve and
not intersecting it is equal to the product of the length of the curve
by the circumference of the circle described by the centre of gravity
of the arc of the curve.

Theorem 2. The volume of a solid obtained by revolving a plane
figure about some axis lying in the plane of the figure and not
intersecting it is equal to the product of the area of this figure by
the circumference of the circle described by the centre of gravity of
the figure.

Proof. (1) Compare the formula for the area of the surface of
revolution of the curve L about the x-axis (see § 7.10)

P=2on(yal
L
with that for the ordinate of the centre of gravity of this curve

M !
yc=—,f=7§ydz.

Hence we conclude that
P=2nly =120y,
where [ is the length of the revolving arc, and 2ny, is the length

of a circle of radius y,, i.e. the length of the circle described by
the centre of gravity when revolving about the x-axis.
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(2) Compare the formula for the volume of a solid generated
by revolving a plane figure about the x-axis (see § 7.6)
b
V=n{(s—yddx

a

with that for the ordinate of the centre of gravity of this figure

b
M, 1
ye="g =35 | Gi—yhax.
Hence we conclude that ‘
V=n.25y.=S 2ny,

where S is the area of the revolving figure, and 2my, is the length
of the circumference described by the centre of gravity when revol-
ving about the x-axis.

7.13.23. Using the first Guldin theorem, find the centre of gra-
vity of a semicircle of radius a.

Solution. Arrange the coordinate axes as shown in Fig. 116. By
virtue of symmetry x,=0. Now it remains to find y,. [f the semi-
circle revolves about the x-axis, then

the surface P of the solid of revo- | Y

lution is equal to 4ma®, and the

arc length /=ma. Therefore, accor- Lo

ding to the first Guldin theorem,

dna? =na-2ny,; y,=2-=.
1 >
—>— T
-a ] a

7.13.24. Using the second Gul-
din theorem, find the coordinates Fig. 116
of the centre of gravity of the
figure bounded by the x-axis and one arc of the cycloid: x=
=a(l—sin{); y=a(l—cos ).

Solution. By virtue of the symmetry of the figure about the
straight line x=mna its centre of gravity lies on this straight line;
hence, x,=mna.

The volume V obtained by revolving this figure about the x-axis
is equal to bn%a® (see Problem 7.6.14), the area S of the figure
being equal to 3ma® (see Problem 7.4.3). Using the second Guldin
theorem, we get

V. 5n%a® _ ba
Y=~ 3= 6"

7.13.25. An equilateral triangle with side a revolves about an
axis parallel to the base and situated at a distance b > a from the base.

Find the volume of the solid of revolution.
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Solution. There are two possible ways of arranging the triangle
with respect to the axis of revolution which are shown in Fig. 117,
a and b.

The altitude of the equilateral triangle is h= VS, the area
S= 023{3 . The centre of gravity O’ is situated at the point of
intersection of the medians and at a distance of b—2 1g3— from the
axis of revolution in the first cas:, and 64 aVS in the second.

4 g
~——b—>8 ~—b —>p

AN
* 0 Il 7 > T
(b)

c

(a)

Fig. 117

By the second Guldin theorem
Vv =2na24]/3_ (b— aVﬁ_):n(a_@_%/E_aT") ’
V __2:rm W(b—{- aVS) (azbzl/-g_{_a;).

7.13.26. Find the centre of gravity of the arc of a circle of radius

R subtending a central angle 2a.
7.13.27. Find the centre of gravity of the figure bounded by

the arc of the cosine line y=cos x between x= ——;5 and x=% and

the straight line y=%.

7.13.28. Find the coordinates of the centre of gravity of the
figure enclosed by line y*=ax®—x*.

7.13.29. Find the Cartesian coordinates of the centre of gravity
of the arc of the logarithmic spiral p=ae® from @,:%to @, = .

7.13.30. A regular hexagon with side a revolves about one of

its sides. Find the volume of the solid of revolution thus generated.

7.13.31. Using Guldin’s theorem, find the centre of gravity of
a semicircle of radius R.
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§ 7.14. Additional Problems

7.14.1. Find the area of the portion of the figure bounded by
the curves y”=x" and y"=x"™ (m and n positive integers) situated
in the first quadrant. Consider the area of the entire figure depen-
ding on whether the numbers m and n are even or odd.

7.14.2. (a) Prove that the area of the curvilinear trapezoid
bounded by the x-axis, straight lines x=a, x=0b and parabola
y=Ax*+4 Bx*4 Cx+ D can be computed using Chebyshev’s formula

_b—a a+b l b—a a+b a+tb 1 b—a
$==3 [-’/ (T-WT)H(T)H(TJFWT)]-
(b) Prove that an analogous area for a parabola of the fifth order

y=f(x)=Ax*+Bx*+Cx®+Dx*+Ex+F

can be computed using the Gauss formula
_b—a atb 3 b—a a+b
S=-5 [5f (—2—— l/‘s‘T>+8f( 2 )+
a-t+b 3 b—a
i/ 5059

7.14.3. Show that the area of a figure bounded by any two ra-
dius vectors of the logarithmic spiral p=ae™* and its arc is pro-
portional to the difference of the squares of these radii.

7.14.4. Prove that if two solids contained between parallel pla-
nes P and Q possess the property that on being cut by any plane
R parallel to these planes equivalent figures are obtained in
their section, then the volumes of these solids are equal (Cava-
lieri’s principle).

7.14.5. Prove that if the function S(x) (0<Cx<Ch) expressing
the area of the section of a solid by a plane perpendicular to the
x-axis is a polynomial of a degree not higher than three, then the
volume of this solid is equal to V=161- lS(O)—|—4S <—;l>—|—8(h)].
Using this formula, deduce formulas for computing the volume of
a sphere, spherical segments of two and one bases, cone, frustrum
of a cone, ellipsoid, and paraboloid of revolution.

7.14.6. Prove that the volume of a solid generated by revolving
about the y-axis the figure a<<x<Cb, 0<C<y<Cy(x), where y(x) is
a single-valued continuous function, is equal to

b
V=2n S xy (x) dx.

a
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7.14.7. Prove that the volume of the solid formed by revolving,
about the polar axis, a figure I<a<oe<P<<m, 0<<p<<p(9),
is equal to

B
2 .
V=—,;—15‘ps (¢) sin @ de.

7.14.8. Prove that the arc length of the curve given by the pa-
rametric equations

x=f"(t)cost+f'(t)sint,
y=—7["(t)sint+f' (¢)cost
is equal to [f(£)+ 7" ()]-
7.14.9. Find the arc length of the curve represented parametri-

cally
!
_ g‘ smz
=)=
1

between the origin and the nearest point from the vertical tan-
gent line.

(L <t<ty)

l

1

7.14.10. Deduce the formula for the arc length in polar coor-
dinates proceeding from the definition without passing over from
Cartesian coordinates to polar ones.

7.14.11. Prove that the arc length [(x) of the catenary y=
= cosh x measured from the point (0, 1) is expressed by the for-
mula [(x)=sinhx and find parametric equations of this line,
using the arc length as the parameter.

7.14.12. A flexible thread is suspended at the points A and B
located at one and the same height. The distance between the
points is AB =2b, the deflection of the thread is f. Assuming the sus-
pended thread to be a parabola, show that the length of the thread

l=2b<1+ r )
at a suificiently small %.

7.14.13. Find the ratio of the area enclosed by the loop of the
curve y -—-i(%—x) }J x to the area of the circle, whose circum-
ference is equal in iength to the contour of the curve.

7.14.14. Compute the length of the arc formed by the intersection
of the parabolic cylinder

(y+2)* = dax
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and the elliptic cone
%xz_*_yz_zz:(),

between the origin and the point M (x, y, 2).
7.14.15. Prove that the area of the ellipse

Ax*+2Bxy-+ Cyr+-2Dx + 2Ey -+ F =0 (AC—B2> 0)

is equal to
B D
a2 CE

(AC— B2)P/2 " where A =

S— —

A
B
D

EF

7.14.16. Find: (a) the area S of the figure bounded by the hy-
perbola x*—y*=1, the positive part of the x-axis and the radius
vector connecting the origin of coordinates and the point M (x, y)
lying on this hyperbola.

(b) The area of the circular sector Q bounded by the x-axis and
the radius drawn from the centre to the point N (x, y) lying on
the circle x*--y*==1. Prove that the coordinates of the points M
and N are expressed respectively through the areas S and Q by
the formulas

xpy=cosh2S, yy=sinh2S, xy=co0s2Q, yy=sin2Q.

7.14.17. Using Guldin’s theorem, prove that the centre of gra-
vity of a triangle is one third of the altitude distant from its base.

7.14.18. Let § be the abscissa of the centre of gravity of a cur-
vilinear trapezoid bounded by the continuous curve y=f(x), the
x-axis and the straight lines x-—=a and x==0. Prove the validity
of the following equality:

b b

§ ax+0)] ()de=(@5+b) | ] (x)dx

a a
(Vereshchagin’s rule).

7.14.19. Let a curvilinear sector be bounded by two radius vec-
tors and a continuous curve p=f(¢p). Prove that the coordinates
of the centre of gravity of this sector are expressed by the follow-
ing formulas:

P2 P2
S o3 cos ¢ do S p3 sin g de
X =£_‘P| . y 23(01
¢ 3 P2 ’ ¢ 3 €2
S o*dg S p*dg

Py ®1
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7.14.20. Prove that the Cartesian coordinates of the centre of
gravity of an arc of the curve p=/{(¢) are expressed by the fol-
lowing formulas:

P2 D2
g pcosp Vp2+p2dp g psing Vo +tpidp
__9 . 1
Xe = ’ @2 ’ Ye = . P2
S Vor+pde S 040" dp

P [



Chapter 8

IMPROPER INTEGRALS

§ 8.1. Improper Integrals with Infinite Limits

Let the function f(x) be defined for all x>=a and integrable on
A

any interval [a, A]. Then lim Sf(x) dx is called the improper
A

>+® g

integral of the function f(x) in the interval [a, + oco] and is de-
+®

noted by the symbol S f(x)dx. We similarly define the integrals

a

B +®
Sf(x) dx and S f (x) dx.
" Thus, -
+ @ A
§ fx dx—Alln:m§f (x)dx;
B B
Sf(x dx = llm Sf(x)dx
+ o - c w A B
S f(x)dx= lim Sf (x)dx—+ lim Qf(x)dx.
- As—o g ;R

If the above limits exist and are finite, the appropriate integ-
rals are called convergent; otherwise, they are called divergent.

Comparison test. Let f(x) and g(x) be defined for all x>a and
integrable on each interval [a, A], AZ>=a. If 0<f(x)<<g(x) for

all x >a, then from convergence of the integral gg(x)dx it fol-
a

«®

lows that the integral Sf(x)dx is also convergent, and Sf(x) dx <
a

a
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< Sg(x) dx; from divergence of the integral Sf(x) dx it follows that

o

the integral Sg(x)dx is also divergent.

Special cor;;parison test. If as x—oo the function f(x)>=0 is an
infinitesimal of order A > 0 as compared with —)l(— then the integral

+ ®

S f (x) dx converges for A > 1 and diverges for A<1.
’ Absolute and conditional convergence. Let the function f(x) be

defined for all x >a. If the integral S[f(x)!dx converges. then the

integral Sf(x) dx also converges and is called absolutely convergent.

In this gase

< § 1 ()1dx.

a

S f(x)dx

a

@

If the integral Sf(x) dx converges, and S|f(x)ldx diverges, then

a a
€

the integral Sf(x) dx is called conditionally convergent.

The change of the variable in an improper integral is based on
the following theorem.

Theorem. Let the function f(x) be defined and continuous for
x>=a. If the function x=q(t), defined on the interval o <t <P
(o and B may also be improper numbers —oo and oo), is monoto-

nic, has a continuous derivative ¢'()=0 and lime (f)=a,
t> a+0

limg (f)= -+ oo, then
t>f-0 4

(fFwde= (i) e @)ar.
a a
Integration by parts involves no difficulties.
8.1.1. Evaluate the following improper integrals with infinite
limits or prove their divergence taking advantage of their defini-

tion.

®

¢ od d [
(@) §x_1n’;x; (b) Sx_—_—z_'_z’;_’_s; (c) stmxdx.
e? 0

- ®



§ 8.1. Improper Integrals with Infinite Limits 389

Solution. (a) By definition,
® A

' odx . dx . 1 A
8—1—3—= llm 5\1—3= llH] (—_2|_?' "):
;2)6 nx A"'“”ezx nsx As+» =X e
. 1 1 1
= Jlim (’s‘—m—m)—"g-
(b) By definition,
tod ¢ ¢4
x . x . x
Sx2+2x—|—5_ lm_1 x2+2x+5+ lim Sx2—|-2x+5
—% B> wB A->+o.)0

(instead of the point x=0 any other finite point of the x-axis may
be taken as an intermediate limit of integration).

Compute each of the limits standing in the right side of the
above equality:

. dx T 1 x410 1 1 Tt
Blinjmgm_sliTw?arc tan 5 ‘B_ 5 arc tan 5 +T’
B
; d 1 114 | 1
i X = 1 Z x4 _=n 1 an —
AmiSm_Alerm 2arctan ) l0—4 2al‘cldn2.
0
Hence,
@
% dx o
,S x2F2x+5° 2°

(c) By definition,

® A
stinxdx: lim stinxdx.
§ A-»+w0

Putting u=x, dv=sinxdx and integrating by parts, we get

P A
lim stinxdx: lim —xcosx|A+Scosxdx =
Astos Aot ® 0 P

= lim (— Acos A+ sin 4).

A-> + »

But the last limit does not exist. Consequently, the integral

S xsinxdx diverges.
0
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8.1.2. Evaluate the following improper integrals with infinite
limits on the basis of their definition:

®

xdx . . ¢ xdx
(a) ‘§Tax;=_3)3’ (b) 5 pra (c) g Ve
¢ 4 ¢ 4 [
(d) sz(lfl_x); (e) S m; () Se *sin x dx.
I -® 0

Solutt’on (a) By deﬁnition

xdx — lim 1 (x2 3)—1/2 A _
V-()tz 3)8 A > + ® l’ )" A>+o| 2 —1/2 2

. ! )
= — l —_—— =1.
Al”lm[VAZ—s IJ :
8.1.3. Prove that the integrals of the form

+ o b
S e~P%dx and S eP* dx
a -

converge for any constant p > 0 and diverge for p < 0.
8.1.4. Test the integral

[}

S‘ dx
14 2x243x4

=1

for convergence.

Solution. The integrand
1

FO) = tooaram
is positive and is an infinitesimal of order A =4 as compared with
% as x—s oo. Since 4 > 1, the integral converges according to the

special comparison test.
8.1.5. Test the integral

®
S‘ dx
x—+sin? x
1
for convergence.

Solution. The integrand f(x)=

tive for x> 1.
As x— oo the function f(x) is an infinitesimal of order A=1

as compared with -)l?; according to the special comparison test the
integral diverges.

prarordls continuous and posi-
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8.1.6. Test the following integrals for convergence:

tan —
In(x241) S X
d N e
(a).S G U P
R Cm3—|~arcsm— R
2—|—cosx x S - S arc tan x
© 5 Etdn () Vst ds @ ) dx

8.1.7. Test the mtegral

(- VxgT)dx
L\ 242y P+
for convergence. l
Solution. The integrand is continuous and positive for x>1.
Determine its order of smallness A with respect to l—x as  x-— 00,

since
1 1

o ViF Y et

2 i/ e g

the order of smallness A= 1. According to the special comparison

®

test the integral S——’i—ﬁlf—xil—dx diverges.
1 x24-2 i/x‘—{-l

8.1.8. Test the integral

LNV
x

5‘ dx
3 ]/x(x——l)(x—2)
for convergence.

Solution. Since the function

Fx)= l/"s(“;ﬂl_%) =:]%_X l/(“%l)("a

is an infinitesimal of order ?»=—g— with respect to % as x— - oo,

according to the special comparison test the integral converges.
8.1.9. Test the integral

S {)/534-2):2 dx
1/x3—l

for convergence.
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Solution. The integrand is continuous and positive for x>=2.
Determine its order of smallness with respect to —)17 as x— 4 oo:

: 3

V3t « 1/2"' X
_5_/:_—1 T /————

-1 — 1

v m V-

Since the second multiplier has the limit 17/2— as x— oo, we

have A:% < 1. Consequently, the given integral diverges.

8.1.10. Test the integral

®

S(l—cos%) dx

for convergence.
Solution. The integrand
1

f(x)= l—cos%:—.?sinz—x-

. e . . . 2
is positive and continuous for x > 1. Since 25m2-)l?~2 (%

the given integral converges (by the special comparison test).
8.1.11. Test the integral

IS

o

1
Slnex;’(ln—-ﬁdx, n>0
1

for convergence.
Solution. Transform the integrand:

1 1
f(x)=1n£#=1n[1+ e”“].
1

n

Since the function is an infinitesimal as x-— oo, then

1

e* —1 1 s fx) 1 .
~. In other words, lim e According to

f(x)~
the special comparison test the given integral diverges.

8.1.12, Test the integral

@

1 —4 sin 2x

—3 = dx
i x4+ |/x

for convergence.
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Solution. The function f(x):l—_‘i—ssﬁ changes its sign together
x3 x

with the change in sign of the numerator. Test the integral

gll——45m2xld
x3—|—|/x

for convergence. Since —HM< , and the integral
x3—|— l/x

1

sz converges, the integral Su_%;ﬂdx converges as well (ac-

i
cording to the comparison test). Thus, the given integral converges
absolutely.

8.1.13. Prove that the Dirichlet integral

sin x
—dx
X

| =

ot 38

converges conditionally.
Solution. Let us represent the given integral as the sum of two

integrals:
.Tl
@ ) o
. smx S inx
/_Og § g L

The first is a proper integral ( since 11m ¥=l>. Applying the
-0
method of integration by parts to the second integral, we have
A
)wd x = lim E'—)':—’fdx=

A-s®
"'l

But the improper integral SCOS* dx converges absolutely, since
n
2

% &
o
o
=i
<
o)
o
®
UJ

lcos*l <, and the integral | %
-;l/
2
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Therefore, the integral Ssm dx converges.

Reasoning in a similar way it is easy to prove that the integral

Coxsx dx also converges. Now let us prove that the integral

| sin x |

- dx diverges. Indeed,

ojac— g |08

| sin x| sinx _1—cos2x

but the integral

2 | Tde 1 (cos2
I —cos 2x . X €O0S 2x
[ tan= Jim o [F—g [P ar=
n k14 n
] 3 T

-

=+ liminA—4Ind —-‘-S°°52"dx
2 4uw 2 x
e
)

co s?x

diverges, since lim In A =00, and the integral dx converges.

A- @
n

2
8.1.14. Prove that the following integrals converge
(a) Ssin (x%) dx; Scos (x®) dx; (b) S?xcos (x*) dx.
0 0 0
Solution. (a) Putting x=V{, we find
jsm (x?) dx—-— ( :}'15 dt.

Let us represent the integral on the right side as the sum of two
integrals:

=

5[

n
j:‘sintdt s2$mtdt+°§smt
0 0 K
2

The first summand is a proper integral, since lim :}_ =0. Let
t++0
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us apply to the second summand the method of integration by
parts, putting B
u=1V'1, sintdt=do,

o ® @®
sin ¢ cos! |® 1 cos ¢t di 1 cos ! dt,
=l =——=| —5 =—
J Vi Vil 2 132 2 ) o2
n/2 n/2 /2
. . | cos ¢ 1
The last integral converges absolutely, since —ﬁ/—zg R and

the integral S converges. We can prove analogously that the

32
X
2
-

integral Scos(xz)dx is convergent. The integrals considered are cal-

0
led Fresnel’s integrals. They are used in explaining the phenome-
non of light diffraction.
(b) By the substitution x2=¢ this integral is reduced to the

integral Scos(tz)dt. The latter integral converges as has just been
0
proved.

Note. Fresnel’s integrals show that an improper integral can con-
verge even when the integrand does not vanish as x — oco. The last
convergent integral considered in item (b) shows that an improper
integral can converge even if the integrand is not bounded. Indeed,

at x=__f/7u—1 (n=0, 1, 2, ...) the integrand attains the values
+ /nx, ie. it is unbounded.
8.1.15. Evaluate the improper integral

o«

§(ﬂ-%" n natural number.
Solution. Make the substitution x=tan¢, where 0 << t<% Then
x=0 at t=0, x— 400 as t—»g-—-O and x;= slt#o Conse-

quently, by the theorem on changing a variable in an improper
integral

o|a

@

[
7
Sﬁ%f e Xsec”df=§c =2 d,
0 0

On changing the variab]e we obtain the proper integral which
was computed in Problem 6.6.9.
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Therefore,
® :n/2, n=1,
S 1.8.5..@n8) n
0

('+x‘)" m 2’

8.1.16. Compute the integral I-——Sl—j_%;dx.
0

Solution. Apply the substitution
x=1/t, dx=—(1/t?)dt

S [+« =5 RV RIS
0 0 0

If another integral / is added to the right and left sides then we

get
l+t‘ 1/¢241
2 = 1+t4 dt_Stwl/tldt

Make the substitutlon z=t—1/t, (14-1/2)dt =
t—+0, z— —o0 and as { — 400, z— -+ o0o. Hence

0
dz 1
_7[ lim g zl+2+ lqn:wSZ—i—?]

| ®
I=—2— S 22+2_ Bs-w
-

dz. Then, as

| |
— i t — li tan
2V 3 pon 2 anV 2V T anpeorerdn V
=2V"2"<2 ) .

8.1.17. Evaluate the following improper integrals:

¢ In x K 2

@) \ —=5dx; (b) \ e * x2m+1dy.
Jrets O]

8.1.18. Compute the integral

_TvETeT
’—5W:rd"

accurate to two decimal places.
Solution. Represent the given integral in the form of a sum of

two integrals
/ _75 l/-xd x*—l—l 1, _S Vx3——x3+l
1_-1 [T N
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Compute the former with the required accuracy, using Simpson’s
formula, and estimate the latter. Since for x =1 we have

VE—ZF1 _ o

X

0< PR < = =x-7/2,
then
0<12=Sx—7/2dx=-§-1v—5/2.
N
At N=7 we get the estimate 7, <% X 49—1}/:7: < 0.0031.
Computation of the integral
7
Ve
Il:' mdx
1

by Simpson’s formula for a step A=1 gives
S,=0.2155,

and for a step 4 =0.5
S,.; =0.2079.

Since the difference between the values is 0.0076, the integral I/,
gives a more accurate value S, ;= 0.2079 with an error of the order

0.0076
22 220.0005.

Consequently, the sought-for integral is approximately equal to
I ~ 0.208

with an error not exceeding 0.004, or /=0.21 with all true deci-
mal places.

§ 8.2. Improper Integrals of Unbounded Functions

" If the function f(x) is defined for a<Cx < b, integrable on any
interval [a, b —e], 0 < e < b—a and unbounded to the left of the
point b, then, by definition, we put
b b-¢
Sf(x)dx= lim S f(x)dx.
a e->+0 4
If this limit is existent and finite, then the improper integral is
said to be convergent. Otherwise it is called divergent.
Analogously, if the function f(x) is unbounded to the right from
the point a, then
b b
§Feyde=tim  § fode.

a €+1Ug4e
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Finally, if the function is unbounded in the neighbourhood of an
interior point ¢ of the interval [a, b], then, by definition,

b c b

Sf(x)dX=Sf(x)dx+ { F(x)dx.

a

Let the function f(x) be continuous on the interval [a, b] except
at a finite number of points. If there exists a function F(x) conti-
nuous on [a, b] for which F’(x)=f(x) except at a finite number
of points, then the Newton-Leibniz formula

b

V() dx=F (0)—F (a)
a
holds good.

Sometimes the function F(x) is called a generalized antiderivative
for the function f(x) on the interval [a, b].

For the functions defined and positive on the interval a<{x<b
convergence tests (comparison tests) analogous to the comparison
tests for improper integrals with infinite limits are valid.

Comparison test. Let the functions f(x) and g(x) be defined on
the interval a<{x <b and integrable on each interval [a, b—e],
0< s<b—a If 0<<f(x)<<g(x), then from the convergence of the

integral Bg x)dx follows the convergence of the integral Sf(x)dx,
b N b ¢

and Sf(x) dxggg(x) dx; from the divergence of the integral
a a

b
Sf (x)dx follows the divergence of the integral Sg(x) dx.
Special comparison test. 1f the function f (x)>0 is defined and
continuous on the interval a<Cx<b and 1s an infinitely large

quantity of the order A as compared with 53— 3 x—b—0, then

the integral Sf(x) dx converges for A <1 and diverges for A>1.

b
=

converges for A <1 and diverges for A > 1.
Absolute and conditional convergence. Let the function f(x) be
defined on the interval a<C{x <b and integrable on each interval

In particulgr, the integral
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b
[a, b—e]; then from the convergence of the integral Sl f(x)|dx

b
follows the convergence of the integral Sf(x) dx.

b

In this case the integral Sf(x)dx is called absolutely convergent.
a

b b
But if the integral gf(x)dx converges, and the integral S]f(x)]dx

b
diverges, then the integral S f(x)dx is called conditionally convergent.
a
b

Analogous tests are also valid for improper integrals Sf(x) dx,
a

where f(x) is unbounded to the right from the point a.

8.2.1. Proceeding from the definition, evaluate the following
improper integrals (or prove their divergence):

3_|_~5 *—2 d
(e) l/‘/xs X, (f) l_xxs_
Solution. (a) The integrand f(x) = =3 ll_ is unbounded in the
nx

neighbourhood of the point x=1. It is integrable on any interval
[1+4e¢, e], since it is a continuous function.
Therefore
¢ . 3 3
j = lim y = lim [ y/In? x ]=
] - x3Mmx e
/nx e +0+ /nx e—>+0 1te
= lim |23 V1n3(1+e)J=—

e->+0

(b) The integrand f(x):c—os—}- is unbounded in the neighbourhood

of the point x=2= and integrable on any interval [0, >—g| as
P D gr )
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a continuous function. Therefore

KA

2

dx
cos X

i
2
dx .
= lim
) e->+0

Sy

= lim In tan(%—}— ) 2-¢ = lim Intan (%—%) = oo.

e->+0 e—>+0

Hence, the given integral diverges.
(c) The integrand is unbounded in the neighbourhood of the points
x=1 and x=23. Therefore, by definition,

2 3
5‘ dx _‘S‘ dx +5‘ dx
Vix—x2—3 Vix—x2—3 Vixr—2—
i i 5

(instead of the point x=2 we can take any other interior point of
the interval [1, 3]). Let us now compute each summand separately:

dx . ) dx . N 2
— = lim —_—— = lim arc sin ()C-—-Q)

J V4x-—x2—3 e»+01,, VI=(x—22 ea+0 l+e¢

+e

= lim [0—arcsin(e—1)] =3

e->+0
3-¢ 3
. ) . N —¢
X——df.__:= 1111] s ——‘-‘d——-—_.._i(______.= llm arc sin ()C-—-Q) =
9 Vix—x2—3  cas0 9 VIi=(x—2? gaut0 9

= SIETO [arcsin (1 —e) —0] =.’2l,

Hence,
3

dx 44
S V4x—x2——3_ 2 -

1

N:I';l

= .

(d) The integrand f(x)= l_/ll—l_—‘_l is unbounded in the neigh-
—x

‘bourhood of the point x=1, which is an interior point of the
interval of integration. Therefore, by definition,

2

f —xZI jl/ll—xz +§ Vu—xz '

0
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Evaluate each summand separately. If 0 <Cx < 1, then

l-¢
g dx (‘ lim g‘ dc
Vit—a=] ) Vl—xz Test0 ) Yi—a
0 0 0
= lim arc smx' ™ = lim [arc sin(1—e)—0] == .
e>+0 e>+0

If 1 <x<{2, then

2 2

g dx __g dx — lim 5 dx _
| Vll—x2| JV2—1 eaqt0 VxE—1
1 1

+€

= lim ln(x+V x*—1) ?

e>+0 I+

= 1im0[1n(2+y’§)—1n(1+e+|/(1+e)2—1)]=1n 24+ 1V'3).

Hence,

2
0

(e) Represent the given integral as a sum of three items, divid-
ing each term of the numerator by f’/x3,
1 1 1 1

x4 ?/7""2 ’ dx P dx
S—T—_—dx= xX12/5 dy xm—z Ik
0 0 0 0

Ve

The first summand is a proper integral evaluated by the Newton-

Leibniz formula:
1

5
12/5 —_— 17/6
Sx dx = 7 %
0

The second and third summands are unbounded to the right of the
point x=0. Therefore,

1

(=]
Slon

1
“ & lim D im 2B s | 215
x4/1o e>+0 4/15 e—>+0 [ i’
0 €
analogously,
1
dx X 1 5
= li S = lim +x¥%| =+,
j 3/8 e>+0 x"”’ € +02 & 2
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Hence,
5_ 6%
2 187*

(f) Represent the integrand f(x)=l—_lﬁ in the form of a sum
of partial fractions:

R 1 1 )
f(x)“l—xs“(l—x)(1+x+x2)“3 [1—x+1+x+x2]‘

1 1

dx 1 dx l x+2
Then Sl— S — T3 l+x+x2dr Since

0 0
1 -
. -
S 4 _ lim ‘S‘ ld — lim ln\l-—r)l f — oo,
H I—x e->+0 H - e->+0

the given integral diverges. There is no need to compute the second
summand representing a proper integral.

Note. Evaluation of the improper integrals from Problem 8.2.1
(a to f) can be considerably simplified by using a generalized anti-
derivative and applying the Newton-Leibniz formula. For instance,

in Problem 8.2.1 (a) the function F(x)=% /1n*x is continuous on

the interval [1, e] and differentiable at each point of the interval
1 < x<Ce, and F’(x)={(x) on this interval. Therefore

e

dx 3:‘3/—.0 3

S\———-—=— lnzx' = —
3 2 2

J xy/ Inx 1

1 l/

8.2.2. Proceeding from the definition, compute the following
improper integrals (or prove their divergence):
2xd o 1 d
' x dx . X
()S(ﬂ a7’ ® 581” B
0
1

6
7 dx dx
COS ) d 5""‘——_—;
(C) § ( )2 ( ) ) :‘3/(4—)6)‘
-2

2
) dx dx
© | sy O |5

-1
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8.2, 3 Evaluate the following improper integrals:

2
(a)\ e—tHNUN 2EE gy
b

Solution. (a) Find the indefinite integral

_xPdxe 1 in X .
ng__xz 2(Qarcsm3 V9 x>+C.

The function F (x) = —;—(9 arc sin%—-x V9—-x2) is a generalized anti-

derivative for f(x)=—‘2 on the interval [—3, 3], since it is

continuous on this interval and F'(x)=f(x) at each point of the
interval (—3, 3). Therefore, applying the Newton-Leibniz formula,

we get
3

X2 dx 3 9
§V9— == (9 arc sin g—x l/9—-x2> =3
(b) Transform the integrand
2—|—x 2+x 2 X
'/ V4—x3_V4—x‘2+V4——x2.

The indefinite integral is equal to
j l/gi’; dx =2 arc sin %—Vél—xz—{—C.

The function F(x)=2arc sin%—-l/4 —x? is a generalized antideri-

vative for f(x) on the interval [0, 2], since it is continuous on
this interval and F’(x)=f(x) on the interval [0, 2).
Therefore, applying the Newton-Leibniz formula, we get

s% ‘/§+f dx =(2 arc Si“%-l/m >z

0
8.2.4. Test the integral
: dx
B
-1
for convergence.
Solutlon0 At the pomt x=0 the integrand goes to infinity. Both

integrals 5 dx ands
-1 0

= - 2.

— diverge, since A=2 T > 1. Consequent-

E
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ly, the given integral diverges. If this were ignored, and the New-
ton-Leibniz formula formally applied to this integral, we would
obtain the wrong result:

1

(a2

And this is because the integrand is positive.

——6.

8.2.5. Test the following improper integrals for convergence:
1 1
ex sin x4 cos x
—_dx; [————d .
(@) g Vi—cosx x b) . 7
0

i/l—x'

Solution. (a) The integrand is infinitely large as x— 4 0. Since

Vl—cosx:lffsin% ~~1{2£x as x— +0,

the integrand has the order A =1 as compared with —l According
to the special comparison test the given integral diverges.
(b) Rewrite the integrand in the following way:
_ sin x+ cos x . |
T == =
This function is infinitely large as x — 1, its order is equal

to 7»=% as compared with %C, since the first multiplier tends

to 1 as x— 0. Therefore, by the special comparison test, the given
integral converges.

8.2.6. Test the following imprOper integrals for convergence:

2 5 }5
@ gln(l+l/ )dx; ()g VELT .

sin x 1 )

e — 4
b /18—

cos xdx

i’/x—sinx

Solution. (a) The integrand f(x)= In (H_l/ ’) is positive in the

Sln X__

(©)

oty

interval (0, 2) and is not defined at x=0. Let us show that
lim [ (x) = oo. Indeed, since
xe+0

esinx__ | ~sinx~ x, In (l —i—i’/;a)fv%/;‘ as X——>0,
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we have

In (1—[—1/”3

E ] = lim

x>0

lim
x>0 e

= llm == 0.
-0/

Ve
x

At the same time we have shown that f(x) ~ %/l_ as x— 0, i.e.
=

that f(x) is an infinitely large quantity of order 7»=% < 1 as com-

pared with % Consequently, by the special comparison test, the
given integral converges.

(b) Determine the order of the infinitely large function f(x) =
_ VETF
= ?7____

1

in the neighbourhood of the point x =2 with respect

to 5— . To this end transform the expression for f(x):
F(x) = VT] Vil 1

/16— x+ l/4+x2 T+ x ,3/2—x'

Hence it is obvious that the function f(x) is an infinitely large
quantity of order }»=%<1 as x— 2. According to the special
comparison test the given integral converges.

(c) The integrand f(x)= o8 X is unbounded in the neigh-

X —sinx
bourhood of the point x=0. Since
Ccos x o CcOos x

f(x) =— .
) f/x——sinx Y x <]_s§;
as x— 0 the function f (x) is an infinitely large quantity of order
X:% <1 as compared with % and, by the special comparisen test,

the integral converges.

8.2.7. Investigate the following improper integrals for conver-
gence:

()Sedx‘ ()sl/(vdx .

dx

© S V/ T ds (@) jm

ln(l/x+l)dx.

tan x__

~= (x—10),
> z

(e) ‘ ;

x—sinx

°—"‘>w
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8.2.8. Prove that the integral

converges.
Solution. For 0 < x <1

1
But the integral g% converges, therefore, by the comparison

sin (l/x)

test, the integral ( dx also converges, and consequently

the given integral converges absolutely.
8.2.9. Prove the convergence of the integral

7
=S Insin x dx
0

and evaluate it.
Solution. Integrate by parts, putting u=In(sinx), dx=dv:
Insinxdx=xlnsin x

a

2

COoSs x
X = dx=—§

dx.

sin x tan x

OC_I}MI-J

0 0 0

Since lin:otL~I' liLn ta’;X=O, the last integral is a proper
X 7—0
one. Consequently, the initial integral converges.
Now make the substitution x=2¢ in integral /. Then dx=2dt;

x=0 at ¢, =0; x=g at t2=%. On substituting we get:

n/2 /4 /4
S Insinxdx=2 S Insin2¢dt =2 S (In2+1Insinf+4Incost)dt =
I 0 0
. n/4 /4
=2t In QIM S Insintdt+2S Incostdt =

0
/4 /4

%In2—|-2 S Insin¢dt+2 S In cos £ dt.
0 0
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In the last integral make the substitution ¢=an/2—z. Then
dt=—dz; {=0 at z,=n/2; {t =n/4 at z, =n/4. Hence,

n<4 /4 m/2
2 S Incostdt =—2 S Incos (%—z)dz:? S Insin zdz.
0 w2 w4
Thus,
n/2 n/4 /2
I:S lnsinxdx=g—ln2+2 S Insintdt +2 S Insinzdz =
0 0 /4
/2
=% In2-2 S lnsintdt=%ln2—|—21.
0
Whence

[+

n/

[ = S lnsinxdx:—-gln 2.
0

8.2.10. Compute the integral
1
X" dx
‘s‘—V—I—_—xfz(n a natural number).

0
Solution. The integrand is an infinitely large quantity of order

——-—é— with respect to l—l—; as x —1—0. Therefore, the integral con-

verges.
Make the substitution x =sin ¢ in the integral. Then dx = cos?dt,
x==0 at =0, x=1 at {-=m/2. On substituting we get

1 d /2 n/e
M n > ginff. .
wdx sin® ¢ c‘osldt= sin” ¢ dt.
J VT = cos ¢ .
0 0 0
The last integral is evaluated in Problem 6.6.9:
— —3 1
2 "nl-fm...7%,neven,
j sin* ¢ dt = 1 .
n— n—
0 —n—‘n_Q...T}“,I’LOdd.

Consequently, the given integral is also computed by the same
formula.

8.2.11. Evaluale the following improper integrals (or prove their
divergence):

©
V=

w

x2 42

v ax todx
(@) J xinzs (D) 5)71—11——;’ (©) dx.

1

]
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8.2.12. Compute the improper integral
1

I,,=Sx"‘ In"xdx (n natural, m > —1).
0

Solution. At n=0 the integral is evaluated directly:

For n > 0 integrate /, by parts, putting

u=In"x, dv =x"dx;

dx xm+l
_ n—1, %4, —
du=nln X=i v P
We get
1
_amEl 1. n m =1 ____n
I,,—m+llr1x ———m+l.s‘x In""'xdx = Fﬁ——ll"-l

0

This gives a formula by means of which one can reduce /, to [, for
any natural n: :
n nn—1) (— 17 n!
I =——m—+1[” —+(m—|—l)2l” 9 — .-.——-(m+l)n 0
And finally,
P el VA
n (m+1)n+l'

8.2.13. Compute the integral

2.0
=§ e=%dx
Y%
0.3 l/ +x *
accurate to 0.03.
Solution. The integral has a singularity at the point x=2, since

24+ x—x?=(2—x) (14 x). Let us represent it as the sum of two in-

tegrals:
2—¢€ 2
e=*dx g’ e—%dx

oA l/ +x—x 2_8‘/ +x—x

l,=

Now compute the first integral to the required accuracy, and estimate
the second one. For €< 0.1 we have

e—1.9

,/2 9 jaVZX—x

3 3
0<1,< =o.115><-§-s‘=0.15384
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Putting e=0.1, we get the estimate /, < 0.028. Evaluation of the
integral
1.9
e~*dx

L=\ m——
2 —y2
0’3/ +x—x

by Simpson’s formula with a step A=0.8 gives
So.s=0.519,

and with a step #/2=0.4,
S,.,=0.513.

And so, integral /, gives the more accurate value, 0.513, with an
error not exceeding 0.001. Taking into consideration that integral /,
is positive, we round off the obtained value to

] ~0.52

with an error not exceeding 0.03.
Note. By putting e=0.01, we get the estimate /, < 0.005, but the
computation of the integral

I, =

1.99
e~*dx

f/? 4 x— x2
3
would involve much more cumbersome calculations.

8.2.14. Investigate the following integrals for convergence:
1 1

>§¢Zw' ) |7z

0
1

cos® x dx tan xdx | sin x dx

© j @ [T ()j A
0

§ 8.3. Geometric and Physical Applications of Improper
Integrals

8.3.1. Find the area of the figure bounded by the curve y=
(the witch of Agnesi) and its asymptote.

1
1 4 x2

Solution. The function yzﬁ; is continuous throughout the en-
tire number scale, and lim y = 0. Consequently, the x-axis is the asymp-

tote of the given cur\;ga\ovhich is shown in Fig. 118. It is required
to find the area S of the figure that extends without bound along the
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x-axis. In other words, it is required to evaluate the improper integ-

ral S=S % By virtue of the symmetry of the figure about the

- ®©

y-axis we have
8.3.2. Find the surface area generated by revolving about the

x-axis the arc of the curve y=e * between x=0 and x= + oo.
Solution. The area of the sur-

[+ ]

A

dx
g—H—x—z~_2 All:g arctanx =2.

vl a

= [T.

g face is equal to the improper in-
! tegral
+
—/\ S:QnSex‘/l_ie ldx
-1 a 1 z 0
Fig. 118 Making the substitutione=*=1,

dt=—e % dx, we get x=0 at
t=1, x=00 at t=0; hence

S=2a (VTFtdt= Qn—[tlfl—}—ﬁ-i—ln(t—l-l/l—i—t*] =

SC—

=a [V 2+In(l+V 2)]

8.3.3. Compute the area enclosed by the loop of the folium of Des-
cartes
x4+ y*—3axy =0.

Solution. The folium of Descartes is shown in Fig. 86. Let us re-
present the curve in polar coordinates:
xX=pcosq; y=psing.

Then p? cos® ¢ 4 p? sin® ¢ — 3a p? cos ¢ sin ¢ = 0, whence, cancelling p?,
we get

__3acos @sing

" cos3 p+sind @

Since the loop of the curve corresponds to the variation of ¢ between
0 and g the sought-for area is equal to

Il

L il
2 2 2 2p
L 0% dg 9a® n?@cos®p
2 2 tp+cos* )
0 [}
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To evaluate the obtained proper integral make the substitution
tang =1, dq} =dt; =0 at =0, o= E at t=o00. Thus we get

cos? ¢
o
9a2 2 dt 9a2 2 dt 342 | a 3
S=7 orm =T e =T [m ], =3
0

8.3.4. Find the volume of the solid generated by revolving the cis-

soid y"=2aix about its asymptote x= 2a.

Solution. The cissoid is shown in Fig. 119. Transfer the origin of
coordinates to the point O’ (2a, 0) without changing the direction of
the axes. In the new system of coordinates
X =x—2a,Y =y the equation of the cissoid 4
has the following form:

s (X+2a)®
V=277

The volume of the solid of revolution about
the axis X=0, i. e. about the asymptote, is
expressed by the integral 7 7z

V=n{ X2dy =2a{X2av.
- ® 0

Let us pass over to the variable X. For this
purpose we find dY = Y’ dX. Differentiating the
equation of the cissoid in the new coordinates )
as an identity with respect to X, we get Fig. 119

s 3(X+2a)? X——(X+20)3 2 (X --2a)2 (X —a)
2YY' = e <

whence for Y >0 we have

V' — (X +2a)? (X—~a) __ (X+2a) (X—a)
XY XV —(X+2a)/X

Hence,

0
V=—2n g X12) (X—a) ;5
J V—=([X+2a/X
-2a
Make the substitution (X 4-22)/X =— 1% X = —2a at t=0, X =0 at
t=o00. Then:
X —— 2at?

2a 4at .
dx T

W; =(l_—|-—ﬁ)_3dt; X+2a=

_ 8a+at?,
X—a=—m;
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whence

o 2at® Ba+-at?) datdt
V“Q"St T+ T
0

@®

= 48na® S —_dt+ 16na3\ T dt.

T+ =

Putting f=tanz, df =sec?zdz, we get t=0 at 2=0, t=o00 at
2=mn/2. Hence,

/e /2
V = 48na? S sin?z cos* zdz + 16ma® S cos?zsintzdz =
0 0
/e /2

= 48na?® S cos? 2z dz —48mna® S cos®zdz -+
0

0

/2 /e

-+ 167a® S sintzdz— 16ma® \ sinzdz.
o 0
/2

Using the known formulas for the integrals Ssin"xdx,
0
/2

Scos”xdx (see Problem 6.6.9), we get
0

. 3n l><3 3_n_ IX3XS 5 5 4
V =64na 554 —64n 5 —————2X4Xs-_2na.

8.3.5. Prove that the area of the region bounded by the curve
1

y:—V—I—Z, the axis of abscissas, the axis of ordinates and the
—X
asymptote x=1 is finite and equals %

8.3.6. Prove that the area of the region bounded by the curve
y :3—1;—:, the axis of abscissas and the straight lines x= 41 is
>

finite and equals 6, and the area of the region contained between
the curve y=% , the axis of abscissas and the straight lines x= +1
is infinite.

8.3.7. Find the volumes of the solids enclosed by the surfaces
generated by revolving the lines y=¢~%, x=0, y=0(0 < x < -+ o0):

(a) about the x-axis,

(b) about the y-axis.
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x3

8.3.8. Compute the area contained between the cissoid y*=5—

and its asymptote.

8.3.9. Compute the area bounded by the curve y=e~2* (al x> 0)
and the axes of coordinates.

8.3.10. Find the volume of the solid generated by revolving, about
the x-axis, the infinite branch of the curve y=2 <————) for x> 1.

8.3.11. Let a mass m be located at the origin O and attract a
material point M found on the x-axis at a distance x from O and

having a mass of 1, with a force F=% (according to Newton’s

law). Find the work performed by the force F as the point M moves
along the x-axis from x=r to infinity.

Solution. The work will be negative, since the direction of the
force is opposite to the direction of motion, hence

A=§-——dx— lim s‘——'%-dx=——"l.
. . X
r

During the reverse displacement of the point M from infinity to
the point x=r the force of Newtonian attraction will perform posi-

tive work —'?— This quantity is called the potential of the force

under consideration at the point x=r and serves as the measure of
potential energy accumulated at a point.

8.3.12. In studying a decaying current resulting from a discharge
“ballistic” instruments are sometimes used whose readings are pro-

portional to the “integral current intensity” g= S 1 dt or the “inte-

0
®

gral square of current intensity” S= S 1*dt and not to the instan-

0

taneous value of the current intensity / or to its square /2. Here ¢
is time measured from the beginning of the discharge; / is alterna-
ting-current intensity depending on time. Theoretically, the process
continues indefinitely, though, practically, the current intensity be-
comes imperceptible already after a finite time interval. To simplify
the formulas we usually assume the time interval to be infinite in
all calculations involved.

Compute g and S for the following processes:

(@) I =1, * (a simple aperiodic process); k is a constant coeffi-
cient, which is greater than zero.
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(b) I =1, *'sinowt (simple oscillating process); coefficients £ and o
are constant.
Solution.

le*dt =1, lim [_e“k']:‘:/o/k;

A-> ® k

(a) g=5 le~*dt= lim
A->w
0

38 oty

2

/
S=\Ilje*dt =

>

® A
(b) g=SI(,e‘k’sincotdt= lim \‘Ioe""sinmtdtz
by Ao o
lyw |

o lim [(®cos ot + ksin wt)e‘k‘](f=m,

=017,
x 4
S— glﬁe'z’” sinotdt= lim Slﬁe”’”l—:—gww=
o

A ®:-
0

—— % lim [1

(k% cos 20t 4 ok sin Qcot)] e~ 2kt ’A
4k A5 »

z+kz
[20*

TEFod "

8.3.13. Let an infinitely extended (in both directions) beam lying

on an elastic foundation be bent by a concentrated force P. If the

x-axis is brought to coincidence with the initial position of the axis

of the beam (before the latter is bent) and the y-axis is drawm

through the point O (at which the force is applied) and directed

downwards, then, on bending, the beam axis will have the follo-
wing equation

Y= g—:r""xl(cosocx—i— sina | x]),

where a and k are certain constants. Compute the potential energy
of elastic deformation by the formula

o

W = Ee S (y")2ax (E, e const).

Solution. Find y":

Y = %e““ [(cos ax -+ sin ox) — 2 (— sinax -+ cos ax) +

3
+ (— sinax—cos ax)] = PTa e~%x (sin ax— cos ax).
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Hence,
[
20,8 F ;
W:Pc/; eSe'”"‘(l—QSmocxcosax)dx:
0
_PWEe[1 2 __P?asEe
TR |20 4a¥+4a? | 42

8.3.14. What work has to be performed to move a body of mass m
from the Earth’s surface to infinity?

8.3.15. Determine the work which has to be done to bring an
electric charge e,=1 from infinity to a unit distance from a
charge e,.

§ 8.4. Additional Problems
8.4.1. Prove that the integral

@®
dx
xP In9 x
1

converges for p>1 and g<1l.
8.4.2. Prove that the integral

@®

S)a"sinqux, g0

0

converges absolutely for ——1 <(p+41)/g <0 and converges condi-
tionally for 0<{(p+1)/g < 1.

8.4.3. Prove that the Euler integral of the first kind (beta func-
tion)
1
B(p, q)=5x”“(l—r)"“dx
0

converges for p>0 and ¢ >0.
8.4.4. Prove that
T
lim %5 sinax-sinpxdx=0,
T »»
if Jo|==|B].

8.4.5. Prove that

1 =§e""~x2"“ dx = %‘ (n natural).
0
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8.4.6. Prove that if the integral \Y@dx converges for any posi-

tive a and if f(x) tends to A as xa—>0, then the integral
\ f(ax)x_f(ﬁx)dx (a>0’ ﬁ>0)
J

converges and equals A ln (B/a).
8.4.7. Prove that

ye- ax__p— 3% dx:j‘ cos ocx-cosﬁxdx= In B .
X X a
0 0
nl/.z
8.4.8. At what values of m does the integral J l—xfnosxdx con-

0
verge?

11
8.4.9. Prove that the integral S'(?dn)%cﬁ converges if k<1, and
0

diverges if k>=1.

@
sin x (1 —cos x)

= dx converges if

8.4.10. Prove that the integral 5

0<s< 4, and converges absolutely0 it 1<s <4
8.4.11. Suppose the integral

§ Fvd (1)
converges and the function ¢ (x) is bounded.

Does the integral
+ o

{7000 de 2)

a
necessarily converge?
What can be said about the convergence of integral (2), if integ-
ral (1) converges absolutely?

8.4.12. Prove the validity of the relation
f (%) = 2f (/4 + x/2) —2f (/4 —x(2)—x In 2,

X
where f(x)=— S In cos y dy.
0
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Compute with the aid of the relation obtained

f (%) = —fln cos y dy.
0

8.4.13. Deduce the reduction formula for the integral
=
2

l,= S Incosx-cos2nxdx  (n natural)

0

and evaluate this integral.



ANSWERS AND HINTS

Chapter I

0
1.1.5. (b) Hint. Prove by the rule of contraries, putting 9= 7 , where p and ¢
are positive integers without common multipliers.
1.1.8. Hint. You may take k=% %5 2

1.1.9. (b) x=4, x<<O0; (¢) —4<<x<<2.

1.1.11. (a) x < —1 or x=1. Hinl. The equality is valid for those values
e : =0; (b) 2<<x<<3. Hint. The equality holds true for those
values of x for which x2—5x+6<0.

of x for Wthh

1.1.13. (a) x < -?T or x>8 (b) x<O0or0<x<5. Hinl. The inequality

|a—b] > |a|—]|b]| holds good when a and b are opposite in sign or when
lal <
. a+2 . 3 3
1.2.3. 0; @@’ (a3+a) (a®—1).

V21,
2 ’

124, b2 aptaz; CE
1.2.11. f(x)=10—|-5>(2x
1.2.13. f(3 )—45x +1 s f(x 3)_5)6 —|—l

—1. 126. 4V 2+1; 2 V'10—5.

l 5x6 - 75x4 -
3 (x )-—1§f—:t53, [ =
. . . Vs,
1.2.14. f (2) =5; [ (0) =4; [ (0.5) = 4; f (—0.5) = ; F(3)=8.

1.2.15. Hin{. From x,, 4+ =X,+d it follows that Ypn+1=0 Frtr = g¥atd  g¥ngd,
1.2.16. x=+2; +£3. 1.2.17. f (x) =x>—5x+6. 1218f(x =23; ¢ (x) =527.

1.2.19. x<<—1 or x=2. 1.2.20. P=2b+2<l——%> X; S=b<l—%—> X.

1.2.21. (b) (2, 3); () (—oo, —1) and (2, w); (d) x=%+2lm(k=0, +1,
42, ...). Hint. Since sinx<C1, the function is defined only when sinx=1;
(8) (—, 2) and (3, «); (h) [1, 4); (i) (—2, 0) and (0, 1); (j) -——+2kn <x<

<J—;-+2kn(k=0, L1, £2, ...



Answers and Hints to Ch. | 419

1.2.22, (d) The function is defined over the entire number scale, except the
points x=42.

1.2.24. (a) (—o, o); (b) (3—2n, 3—m) and (3, 4); (c) [—1, 3];
(d) (—1, 0) and (0, o). 1.2.25. (b) 5 << x<<6.

1.2.26. (a) 2kn<<x<<(2k+41)n (k=0, £1, £2, ...); (b)[—%—, ——l] .

1.3.3. (b) Hint. Consider the difference —2— ——21_
I4+x2 14x

1.3.4. (b) It increases for —5-6£+kn <x< %—l—kn (=0, +1, +2, ...)
and decreases on the other intervals.
1.3.7. The function decreases on the interval 0 < xg% from o0 to 2 and

increases on the interval %gx < % from 2 to + .

1.3.9. (c) The function is neither even, nor odd, (d) even.
1.3.10. (a) Even; (b) odd; (c) odd; (d) neither even, nor odd; (e) even.

1.3.02. (a) |A|=5 o©=4, ¢=0, T=1; (b) | 4 |=4, 0=3, g="T,
T=2Tn; (c)|A|=5, m——, (p-arctan 3 ,T 4n. Hint. 3 sin = +4cos%=
= 5sin -—-—l—(p), where coscp——, smtp:%—. 1.3.13. (b) T=2m; (¢) T =1.

1.3.16. The greatest value f(l)—2 Hint. The function reaches the greatest
value at the point where the quadratic trinomial 2x2—4x-3 reaches the least
value.

1.3.17. (a) Even; (b) even; (c) odd; (d) even.

1.3.18. (a) T=m; (b) T=6m.

1.3.19. Hint. (a) Assume the contrary. Then

x+T+sin(x+T)=x-}sinx,
T

whence cos (x—l——g-):— , which is impossible for any constant T,
QSiﬂ—E-
since the left side is mnot constant; (b) suppose the contrary. Then
—_— — —_— T
cos Vx+T=cos V %, whence either Vx+T+ V x=2nk, or ——o——— =
Vx+T+V x

= 2nk (k=0, +1, £2, ...), which is impossible, since the left-hand members
of these equalities are functions of a continuous argument x.
1

14-arcsiny |

1.4.6. (a) x= 3 i (b)x=3siny; ()x=yl€s (y>0); (d) x=
— gy _ logy O<y<2o0r2<y< ).
log, y—1 log L.
€9
W V— V3 1o 11
1.6.3. (a) 0’_ 9 1 (b) _?r '1"7 —“g‘s 'I'éy .
10 113

(c) 2; 2.25; 227, 2%, PN

1.6.9. Hint. The inequality ln+3

—2|<s is satisfied for n> N =
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=E(%—-l)‘ At e=0.1 the inequality is fulfilled beginning with n= 10, at

£¢=0.01 beginning with n=100, at ¢=0.001 beginning with n=1000.

1.6.10. Hint. Verify that the sequence {x2n_1} tends to 1 as n-— oo,
and the sequence {x,,} tends to 0 as n— oo.

1.6.12. (a) It has; = (b) it does not have; (c) it has; (d) it does not have.

1.6.14. Hint. (a)|x,,|<—’2l—; (b) |x,,|<7.

1.6.19. Hin{. For a > | put V?:I—{—a,, (o, > 0) and, with the aid of the
inequality a=(1-a,)" > na,, prove that a, is an infinitesimal. For a < 1 put

V?:: ! (o, > 0) and make use of the inequality i:(l + a,)? > na,.
|+ a, 7

5 1 |
L7 () 70 ©0 (0 5. 1720 @ L 01
1.7.4. (b) 1I; (f) 0. Hinf. Multiply and divide by imperfect of a sum, square
4

and then divide by ne; (g —%; (h) 1. Hint. Represent each summand

of x, in the form of the difference
1 __]__l 1 1 . 1
Ix2 2’ 2%x3 2 3 """ ’na(n+1)
1
n+41°

1.7.5. (a) —;~; () 1, (c) 0, (d) —%. Hint. The quantity§171 is an in-

l
nt+1’

3| —-

which will bring x, to the form x,=1—

finitesimal, and cos n3 is a bounded quantity; (e) 0; (f) %

1.8.6. (b) Hint. The sequence is bounded due to the fact that n!=-1x2x
X3X ...Xn=2"-1 and therefore

0 1 1\2 1 \n-1 3 1\n-1

1.8.7. (b) 0. Hin{. Take advantage of the fact that x';“:m <.

1.8.9. Hint. For all n, beginning with a certain \;lalue, the inequalities
1 n/— n/ - H n/

7 <y a< P/, and lim J/ n=

% <a<n are fulfilled; therefore

1
Vv on
1 1

1.8.10. Hint. The sequence {y,} decreases, since y,4;=a®" "' =a?" X% =

= V—!—/r—t (.’/n > l)~
The boundedness of the sequence from below follows from a > I. Denote
lim y, by b and from the relation y,4,= ¥y, find b=1.

1 -+ ®

1.8.11. Hint. Ascertain that the sequence increases. Establish the bounded-
ness from the inequalities

U B S )

n? “n(n—1) n—1 n

o< 1+ (1= ) (3ot )t (= L) e

(n=2);
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2n

vm and take advan-

1.8.12. Hint. Transform x, into the form x,=
tage of the inequalities
2n < 2n
2n+1 " YVprfi+4n
1.8.13. Hint. Sce Problem 1.8.7 (a).
1.8.14. Hint. Establish the boundedness of the sequence by comparing x,

with the sum of some geometric progression.
1.9.2. (b) Hint. Choose the sequences

1 , 1

<L

and ascertain that the sequences of appropriate values of the function have
different limits:

1
1 7
— X

lim 2% = 4+ 0, lim2 " =0.

1.9.3. (e) Hin/. Take advantage of the inequality

2 2

(f) Hint. Transform the diflerence

I _arctanx < tan (i—-arctan x)=-)lc— (x > 0).

sinx L =sin x—sin x
2 6

into a product and apply the inequality |sina!<<|a].

1.10.1. (d) %; (e) —g—; ) — Hint. Multiply the numerator and de-

5
nominator by imperfect trinomial square (f/lO—x—i—Q): (8) ;—;; (h) log, 6.
. . —3 . (x—3)(Vx+6+3) L2
Hint. lim [lo X —]=lo {llm =log, 6; (i) = ;

Y I Va s Y Bl I x—3 8% ()3
i 7
( vk

1.10.2. (e) —;- . Hint. On removing the irrationality to the denominator divide
the numerator and denominator by x.
1.10.3. (b) 32. (o) % Hint. Put x=z2% (f) co. Hinl. Put =—

) X=z,

x=—;—[-z; 2—0 as x—»%; (g) —3. Hint. Put sinx=y.
1

1.105. (b) e?: (¢) et (d) emk;  (f) 4 (g) %: (h) 2.

cot a

1.10.7. (b) -JT 1.10.8. (b) 1; (c) el; (d) e

1

1.10.11. (a) —; (b)-—%; (C)g; (d)%: (e)0; () — 1

_.N;l.—-

L1012, (@) 555 (D) —2 © 55 @~ (@) —2a

P )
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1
1.10.13. (a) ¢4, (b) —1; (c) 2Ina; (d) e (e)e ®; (e (g I
L @99 O (k) a—p. Hint.

erx __ pgBx eta=3 x_ |

lim = lim e3*
X->0 X X0

1.10.14. (a) V2 . Hint. Replace arc cos (1—x) by arcsin V' 2x—x2; (b) 1; (¢) a,
1.11.5. (b) It is of the third order of smallness. Hint.

lim tan oc——sina=_l_‘
o -0 al 2
1.11.6. (b) They are of the same order; (c) they are equivalent.
1.11.8. (a) 100x is an infinitesimat of the same order as x; (b) %2 is an
infinitesimal ot an order higher than x; (c) 6sinx is an infinitesimal of the
same order asx; (d) sin®x is an infinitesimal of an order higher than x;

(e) f/tan‘x 1s an infinitesimal of an order of smallness lower than x.

1.11.9. (a) It is of the fourth order of smallness; (b) of the first order of
smallness;  (c¢) of the third order of smallness; (d) of the third order of
smallness; (e) of the first order of smallness; (f) of the order of smallness

%; (g) of the first order of smallness; (h) of the first order of smallness;

=o—f.

(i) of the second order of smallness. Hint. Multiply and divide the difference

Ccos X — ?/cosx by imperfect trinomial square;  (j) of the first order of smallness.
1.11.10. The diagonal d is of the first order of smallness; the area S is of
the second crder of smallness; the volume V is of the third order of smallness.

1.12.3. (b) 4 () 3 (g —12—; (i) 2. 1.126. (a) I; (b) 2.

I 3 4
L7 @) 5 () 5. LI28 @z (D) 25 (© 2_ (d) %; ©

2.
5
) %; @ —2 (0 L. 1129, 10.14. Hint. 1042=10° x (1 +-0.042).

1L13.1. (b)) f(1—0)=—2,  f(1+0=2 () f(2—0)=— o
F(240)= + . 1

L1338, (@) [ (O =54 [(+0)=0; (b) J(=0)=0, [(+0)=+eo;

(©) f(=0)=—1, f(+0)=1. ) o

1.14.2. (b) The function has a discontinuity of the first kind at the point
x=3. The jump is equal to 27.

1.14.3. (c) The function is continuous everywhere; (e) the function has
a discontinuity of the first kind at the point x=0; the jump equals n. Hint.
arc tan(—oo)=—-%, arctan(—l—oo):—{—%.

1.14.6. (b) At the point x,=05 there is a discontinuity of the first kind:
f(5—0)=—-’2l, f(5+0)=%; (c) at the point x,=0, a discontinuity of the
first kind: f(—0)=1, f(+0)=0; (d) at the point xo———g—, an infinite dis-
continuity of the second kind:

f(g'—-0>=-|—oo, f<—g—+0)=—oo.

1.14.7. (a) At the point x=0 there is a removable discontinuity. To remove
the discontinuity it is sufficient to redefine the function, putting f (0)=1; (b) at
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the point x==0 there is a removable discontinuity. To remove the discontinuity
it is sufficient to extend the function putting f(0)=1; (c) at the point x=0
there is a dlscontmulty of the second kind: f(—0)=0, f(40)= + o; (d) at

the points x=(2k ]—l)—2— (=0, £1, £2, ...), removable dlscontmulties, since

f(x)= lim (sin x)2r { 0 if |sinx| <1,
x)= lim (sin x)?" = ey ’
"o 1if |sinx|=1;
(e) at the points x=4kn (k=0. +1, +2, ...), discontinuities of the Ist kind,
since
|sinx| [ 1 if sinx>0,

f ()= sinx | —!1 if sinx <0;
(f) at the points x=n=0, +1, +2, ... removable discontinuities, since
—1 if x=n,
f(x):{ 0 if x # n.

1.14.8. (a) At the point x=1 there is an infinite discontinuity of the second
kind; (b) at the point x=—2, a discontinuity of the first kind (the jump
being equal to 2); (c) at the point x=0, an infinite discontinuity of the second
kind, at the point x=1, a dlscontmmty of the first kind (the jump being equal
to —4); (d) at the pomt x=1, an infinite dlscontmultv of the second kind.

3
L14.9. (a) f(O)=1; (b)) fO)=—5; (o) f(0)=—; (d) F(0)=2.
1.15.2. (b) The function is continuous on the interval (0 + o).
1.15.3. (b) The function is continuous everywhere. At the only possible point
of discontinuity x=0 we have

lim y= limu*=1, lim y= limul=1; y|lyo=Yly==1=10
X—> =0 u->1 X->+0 u--1

(c) at the points x=%+nn (n=0, £1, +2, ...) there are removable dis-

continuities, since limy= lim y=—1.

noou ©
X - = s

1.16.2. Yes. 1.16.12. 1.563. 1.16.13. No. For instance, the function y=x32
on the interval [—1, [].
1.17.1. (a) Hint. Multlply the obvious inequalities:

Vi< n+l :

V2<n—l)<—*2—‘~.

(b) Hint. Iet/l— X ==X —=X...X —/—,

. 2n— 2 B |
Then A < B since —2T < m and A < AB—§”'—_|'_—'.
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1.17.2. (a) Hint. Extract the 10lst root from both sides of the inequality
and reduce both sides by 1012,
(b) Multiply the obvious inequalities:

99 x 101 < 1007,
98 x 102 < 1007,

2 X 198 < 100%,
1 % 100 X 199 X 200 < 1004

1.17.3. (a) -3 <axa<—lor Il <x<3;, (b) x<-—%— or x>%; (c) the

inequality has no solutions, since it is equivalent to the contradictory system
x—2>0, x(4x2—x+4) < 0. 1.17.4. Yes. 1.17.5. (a) No; (b) Yes.

1.17.7. Hint. Apply the method of mathematical induction. At n=1 the
relation is obvious. Supposing that the inequality

(l+xl) (l+x2) (l+xn—l)> l—]—x1+x2+ e ‘|’Xn—l

holds true, multiply both its sides by 1+4x, and take into consideration the
conditions 14+x, >0, x;-x, >0 (i=1, 2, ..., n—1).
1.17.8. (a) [1, + «); (b) 2nn)?<<x<<(2n4-1)*n* (n=0, 1,2, ...);

() x=0, 1, +2, ...; (d) (—o, 0) for f(x); g(x) is nowhere defined;
() [—4, —2] or (2, 4]; () x=(2n—i—l)% (n=0, +1, £2, ...).

1.17.9. (a) No: ¢ (0)=1, and f(0) is not defined; (b) No: f(x) is defined
for all x #0, and @ (x) only for x > 0; (c) No: f(x) is defined for all x, and
@ (x) only for x=0; (d) Yes; (e) No: f(x) is defined only for x > 2, and ¢ (x)
for x > 2 and for x < 1.

1.17.10. (a) (0, o); (b) [I, ov). 1.17.11. V=8x (x—3) (6—x), 3 < x < 6.

1.17.12. (a) x=>5. Hint. The domain of definition is specified by the incqua-
lities x+2=0, x—5=0, 5—x=0, which are fulfilled only at the point
x="5. Verify that thc number x=25 satisfies the given inequality. (b) Hint.
The domain of definition is specified by the contradictory inequalities x—3 > 0;
2—x > 0.

1.17.17. (a) f(x)=

blem 1.17.16).
1.17.18. An even extension defines the function

q>(x)={

An odd extension defines the function

wm={

1.17.21. Hint. If the function f(x) has a period T;, and the function ¢ (x)
has a period T, and Ty=n,d, Ty=n.d (ny, n, positive integers), then the pe-
riod of the sum and the product of these functions will be T =nd, where n is
the least common multiple ot the numbers n; and n,.

1.17.22. Hint. For any rational number r

aX¥d-q=%  g¥—q=%

(b) ax== 5 - 2a (see Pro-

2 X
[Eareu ey

f(x)y=x*+x for 0<<x<3,
f(—x)=x>—x for —3<<x < 0.

f(x)=x>+x for 0 <<x<3,
—f(—x)=—x>+x for —3<x<O.

| for rational x,
0 for irrational x.

A(x—]—r):?»(x):{

But there is no least number in the set of positive rational numbers.



Answers and Hints to Ch. I 425

1.17.23. Hint. 1f we denote the period of the function f(x) by T, then from
F(Ty==F(0)=F(—T) we get
sin T+ cos aT = 1 =sin (—T)4-cos (—aT),

whence sin T=0, cosaT =1, and hence T =kn, aT =2nn, a=2—: is rational.

1.17.25. The difference of two increasing functions is not necessarily a mono-
tonic function. For example, the functions f(x)=x and g(x)=x? increase for
x=0, but their difference f(x)—g (¥)=x—x2 is not monotonic for x=0: it

1
g and decreases on 5 oo>.
1.17.26. Example:

increases on [0
K if x is rational,
Y=Y —x if x is irrational.
1.17.27. (a) x=%ln
(b)

'ty .
—, (Ch<y <y

y for — o <y<l, Ay /,'S’/

x=3 Vy for l<<y<16, \\3/
log, y for 16 < y< . J/
1.17.28. Hint. The functions y=x2+ y f(z)
492+ 1 (x =>—1)and y=— 1+ Vx Y
(x=0) are mutually 2inverse, but the VZ
equation y=x, i. e. x¥242x+ 1 =x has
ng real roots (see Problem 1.4.4). ///' f[f{.z)]
1.17.30. (c) Hint. 1f E is the domain H
of definition of the function [ (x), .
then the function y=Ff[f (¥)] is defi- 0 flx) Z
ned only for those x€E for which .
f (x) EE. How the pointsof the desired Fig. 120
graph are plotted is shown in Fig. 120.
1.17.32. Hint. The quantity T=2 (b—a) is a period: from the conditions of
symmetry f(a4-x)=[(a—x) and f(b+x)=f (b—x) it follows that

flx+2(—a)]=[[b+(+x—2a)]=f(2a—x)=f [a+(a—x)] =] (»).
1.17.33. (a) It diverges; (b) it may either converge or diverge. Examples:

1 14 (—1)» .
oy = yn=¥; lim (x,y,)=0,
n - o
x,,=l Yp=n? lim (xpy,)= .
n n-> o
1.17.34. (a) No. Exa;nple: Xp=n, y,=—n-+1; (b) No.
1.17.35. a,,=“("n— ) (n=3, 4, ...). 1.17.36. Hint. Take into account
that ||x,,|—|a||<|x,,—a|. The converse is incorrect. Example: x,=(—1)1+!,
1.17.38. Hint. The sequence «, may attain only the following values:
0, 1, ..., 9. If this sequence turned out to be monotonic, then the irrational

number would be represented by a periodic decimal fraction.

1.17.39. Hint. 1f the sequence ‘Z—" increases, then

n
a; < A+

,lhe byya; < apqah; (=1, 2, ..., n),
b; by +1
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whence it follows that
buv1(ar+as+...+ap) < apey (b+b2+ ... +bn),
and hence
al—i—a?-i-...—|—a,,+1_a_1—l—a2—|-...-|-a,,=
O1tbet .. byt bitby .. by
=an+] (b]+b2+'-'+bn)—'bn+l(al+a2+'-‘+an)
(b1 +bo+ .o +by41) (by+by4 ... +by)
1.17.40. (a) 2; (b) 0; (c) 0. 1.17.41. Hmt From the inequalities

nx—1 < E (nx) < nx it follows that x—1 < x— Y F flnx)\x‘

1.17.42. Hint. From the inequalities

i (ex—1)<< D) E (kx) < D) kx,
k=1 k=1 k=1

> 0.

it follows that

R +1
_7<FL E(kx)<x TR
k:

1
1.17.43. Hint. Take advantage of the fact that lim a” = lim Va =1 (see

n—- ® n—->x
1

Problem 1.6.19), lim a-—”—=—_=l, and for a > 1, |h] < % the ine-

. n
n- lim a

n - o
1 1

qualities a " —1 < a?f—1< a™ —1 take place.
1.17.45. Hint. Divide the numerator and denommator by x™.
1.17.46. (a) a=1; b=—1; (b) a=1; b——— Hint. To find the coefficient

a divide the expression by x and pass over to the limit.
1.17.47. (a)
Fx) = lfor 0<x<1,
Tl xfor x> 1.

(b)

0 for x # %—}—nn,

f(x)= - (n=0, £ 1, £2, ...).
1 for x=7+rm

1.17.48. Hint. Take advantage of the identity
(1—x) (14x) (1422, .. (1 +x2")y=1—x2",
1.17.49. Generally speaking, one can’t. For example,

lim ln(1+x)+ln(l—x) lim ln(lTxZ)z_l'
X >0 X >0 X=
and if we replace In(14x) by x and In(I—x) by —x we will get the wrong

result: lim *=*_0
X=->0 X
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1.17.50. % Hint. 1f a is a central angle subtended by the arc under con-

sideration, then the chkord is equal to 2R sm—2—~Ra and the sagitta to
2
R (l—cosa) ~ a

1.17.51. 2. Hint. The diflerence of the perimeters of a circumscribed and
inscribed regular n-gons is equal to

tana—sina

2Rn<tan-——~sm—)——2 R nRa?,
n n

where a:%, and the side of an inscribed n-gon is
Lo .
2R sin 7=2R sin o ~ 2Ra.

1.17.52. On the equivalence of (1+a)®—1 and 3a as o — 0.
In (1+x) x

1.17.53. No, log (1 4+x)= 10 10

1.17.54. (a) Yes. Hint. If the function q>(x)=f(x)—|—g(x) is continuous at
the point x=x,, then the function g (¥)=¢ (x)—f (x) is also continuous at this
point; (b) No. Example: f(x)=—g (x)=signx (see Problem 1.5.11 (p)); both
functions are discontinuous at the point x=0, and their sum is identically
equal to zero, and is, hence, continuous.

as x — 0.

1.17.55. (a) No. Example: f (x) = x is continuous everywhere, and g(x):sin—z-
for x # 0, g (0)=0 being discontinuous at the point x=0. The product of these

functions is a function continuous at x=0 since lim xsin == 0; (b) No. Exam-

X=+0
1 for x=0, . . .
ple: f(x)=—g(x) = 1 for x < 0; both functions are discontinuous at the
point x=0, their product f(x) g (x)=—1 being continuous everywhere.

1 if x is rational,
1.17.56. No. Example: f(x)= 1 if x is irrational.

f (x)=2\ (x)—1, where A (x) is the Dirichlet function (see Problem 1.14.4 (b)).
1.17.57. (a) x=0 is a discontinuity of the second kind, x==1 is a disconti-
nuity of the first kind; (b) x=1 is a discontinuity of the first kind: f(1—0)=0,
f(1+0)=1; (c) ¢ (x) is discontinuous at all points except x=0.
1.17. (a) x=n=0, +1, +2, ... are discontinuities of the first kind:
lim0y=1, llm y Y |x=n=0. The function has a period of 1; (b) x= 4+ Vo
X—->n-=

(n=41, £+2, . ) are points of discontinuity of the first kind:

We may write

lim y=2n—1; lim y= yl_v;‘=2”

x-»VrT—O x—ﬁVﬂ-\ru

The function is even; (c) x=4Vn (n=4+1, +2, ...) are the points of
discontinuity of the first kind; at these points the function’ passes over from the
value 1 to —1 and returns to 1. The function is even;
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(d)
. . ) T n
(x if |sinx]| < 5 Le _K'*"m <x<—6—+nn,
y= % if |sinx|=%, i
|

lO if |sinx| >

e x=4 g—{—nn.

. Fud 5n
5 e g-{—nn <x< T_Hm'

x=4 %—{—nn are discontinuities of the first kind.

1.17.59. The function f[g(x)] has discontinuities of the first kind at the
points x=—1; 0; ++1. The function g|[f(x)] is continuous everywhere. Hint.
The function f(u) is discontinuous at u=0, and the function g (x) changes sign
at the points x=0, +1. The function g[f (x)}=0, since f(x) attains only the
values 0, +1.

1.17.61. Hint. Write the function in the form

x4+ 1 for —2<<x <0,
F(x) = ?0 for x=0,

(x+ 1)2—_“- for 0 < x<<2.
Make sure that the function increases from —1 to I on the interval [—2, 0)
and from 0 to 5 on the interval [0, 2]. Apply the intermediate value theorem

to the intervals [—2, —1] and [0, 2]. The function is discontinuous at the point
x=0; f(=0)=1, f (+0)=0. , _
1.17.62. Hint. Suppose € > 0 is given and the point x,€la, b} is chosen. We

may consider that . .
e<<min [f (x0)—f (@), [ (b)—F (x0)].
Choose the points x; and x,, x; < %, < X, so that

) =F(x)—e, | (x)=F(x0)+e,
and put 8 =min (xo— %3, ¥3— %)
1.17.63. Hint. Apply the intermediate value theorem to the function
g(x)=Ff(x)—x. . , L
1.17.64. Hint. Apply the intermediate value theorem to the function f(x) on
the interval [xq, x,], noting that

min (] (o) - o f )] o [ (60) - (60) oo ()] < maX 1 (51)s oy /()
1.17.65. Hint. Apply the intermediate value theorem to the function g (x) =
X 1 !
1.17.66. Hint. At sufficiently large values of the independent variable the
values of the polynomial of an even degree have the same sign as the coefficient

at the superior power of x; therefore the polynomial changes sign at least twice.
1.17.67. Hint. The inverse function

=2x——1— on the interval

—V—y—l for y < —1,
X= 0 for y=0,

Vy—1 fory>1

is continuous in the intervals (—o, —1) and (1, o) and has one isolated point
y=0.
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Chapter II
2.1.1.  (b) _g_(l)" 2.1.2. (b) y'=10x—2. 2.1.5. v,, =25 m/sec.
2.1.6. (a) y'=3x% (b) y'=—}2-3. 2.1.7. The function is non-differentiable at

7

5
the indicated points.  2.2.1. (b) y'=—%ax 3 +%bx_ 3. 222 (y =
—ovarctanx-1. 2.2.3. (b) —9000. 2.2.4. (a) y'=6x>+3; (b)y'=—0b —

2V x
, —3x242x2 , 3Vix+8Vix+2 Vi,
40 (@ y =R () = Vits Va2 Vi,
Y V\f (x*—x+1) 6(x—2 /x)
,_cosg—sing—1, P YT ' — e . e
@ V' =—T—sqr + O ¥=%"F5i (@ y'=2%rcosx () y
_x (cos x— sin x) — sin x— ex
.ex
2.2.5. (1) 30Iné (tan® ¥)——; (@) sin s - ——1
sin 6x Vi—x EN
2(1—x) 2
. 2cos x 2sinx
2.2.6. (b '=—3(3—sinx)?cosx; (c 'z .
® v ( © v 3 sin x‘?/sinzx cos® x
2ex +-2% In 2 51n4 x |
d = — H e) y’=3cos3x — = sin =
(d v 3?/(29x_2x+])2+ . (e) 5 5+
2 ’ (9 2 __ _a . 2a. ‘.
2V__ sec2V'x; () y' = (2x—5)cos (x2—5x+1) 7 sec® — 1 (h) y
1 1 X 1 3
= +— + 55 (i) y'=2Inarctan » ——— « /.
XVH-lﬂzx arctanx ' 1+4x? arctan—g— 9+x
2.28. (b) y'=— —l- sec? x4 cosec?x; (d) y'=3xX

sinh? (tan x) cosh? (cot x)
% (x sinh 2x3+cosh x2-sinh 2x2); (e) y’ = eSiNNax (bx(acoshax+h)

3,— l—x 1 2x
’ 3 2 in3 2 —_— J— M
2.29. () y'=)/x [ Sin?xcos x(Bx—l == —+3cotx 2tanx) ;
(x+1) | 1
, 2 x+
(d) y'=(tanx) (—- In tan x 4- sn 2x>

2.2.13. (a) [ (x)——-]— (cosh——{—ﬂmh ); (b) f'(x)=tanhx; (c) f'(x) =

= Vioshx+1; (d) f (X)_coshx.
X (cosh bx-+sinh bx) = (ab) eta+0)%,
2.2.14. (a) y’ = (cos x)*'" ¥ (cos x In cos x— tan x sin x);

(e) f' (x)=4sinh 4x; () [’ (x)=(a+b)es* X

(b) o = cos 3x .
4 i’/s—in:2 3x (I —sin 3x)8
) Bx? 4 x—24
© ¥ = i B :

5
36— wt+2° x+3?
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In3 tan V arc sin 3%

V811 V arcsin 3-2%
sin In3 x-In2 x

5x 3/ costIn® x (14 j/ cos? lrﬁ’x)"f/(arc tan 3/ cos In? ) )
2.3.1. (b) knekx;  (e) 2n-1lsin (Zx—l—n %) ) -i-sin (x—f—n-g—) +
+3—’2’—zsin (3x+n )—i— 4 sin <5x—l—n—>

2.2.17. (a) y'=

(b) ¥y =—

2.3.4. (b) e* (x2--48x--551); (c) e** {sinPx [oc"—'—l—(-rll.—_é—l-) an=2p2 4 J +

neip  (n—l(n—2)
—I—COSBX [na lﬁ —]>'<"—2'X3—a” 353—(—...]}.
2x2 4 3x (1 +2x?) arc sin x 3x 2
2.3.6. —; b 55 20—
(a) (l+x2)V‘l+x2 () i +(l_x3)3 (C) (4 X
(1—x2) 2
X (2x2—1).
2.3.8. (a) x®sinx—60x%cos x— 1140 x sin x-- 8640 cos x; (b) 2e—*% x

X (sin x4cosx); (c) e*[3x2+6nx-+3n(n—1)—4]; (d) (—1)?[(4n*+2n +
-+ 1 —x2) cos x—4nx sin x].
1 1 IX3X5X...xX197x(399—
2.3.9. (a) 100! [ G (x_l)m] . () &5 %)
2100 (] —y) 2

1 1
Hint. y=2(1—x) %2 —(1 —x)?

" 4 cos x
241 (0 == GFTIsmae

2.43. (b) y,—= —cotk%lt; (d) y,—— 2e=2et,
4.4. (b 4 A

244 OV =3mry © YeTg o

2.4.5. (b) y,, =—3sintsec?t.

Yy —_
L , 9 , 3
2.4.6. (b) !/;=—i—+e *5 © yx=§_—’5‘; (d) yy=— ]/%

. _eF—e)) (1—ev+Y) der ™ 2ot
2.4.7. (b) y = TE4E PO g= (ex—y+1)3_(x+y+y{)3‘

2.4.9. (2) 2a—2x—y . (b ) x+y © _ersinytersinx

1
@ x-+2y—2a’ e¥ cosy+te-Y cosx ’ @ e
20+ 2 lll csint {
2.4.10. (a) —_ y5 H (b) 256 2.4.11. (a) —m, (b) ?,
. {
© £yl o - of? ' © (acos t—bsint) cos3§ '
413’ 2t (222t +1)° o !
4 sin 5

(f)—]/2 tz, ©® —VIi-2.

2.5.1. (b) 6x+2y—9=0; 2x—6y-t37=0.
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2 10
2.5.2. M ——=, 5 — M, = , 0— — ).
© ‘( V3’ +3V> (V 3 3)
2.53. (b) ¢=arctan2)2. 2.58. (b) x4y—2= y==x. \
2.5.15. (a)-;i; (b) y=1, x4+2y—2=0; (©) +E=__§_<x+_i_);

() % 2.5.16. 11.

a8, - =
2.5.17. 26,450.  2.5.19. s-—at—T ; v=a—gt; smax——s’t= a =3

2.5.20. U:,;Z_?ﬂpf}*_: sin M (14+2ecos M). 2.6.3. Ay = dy=0.05.
2.6.5. (b) log 10.21 =~ 1.009; (d) cot 45°10’ ~ 0.9942.
2.6.7. (c) Ay=|cosx|Ay (d) Ay=(1+tan®x)A,.
4Inx—4—In3x , ,

2.6.9. (a) ¢12y:4-"¢22ln4(2x2 In4—1)dx? (b) d%y W_——_—Tﬁdx-;
x n’x—
(c) d3y=—4 sin 2x dx3.
s 443y o, 2 _ 443 L, 4 2.
2.6.10. (a) d*y =)y dx?;  (b) d’y= =) dx l__x‘!dx H

in particular at x=tan ¢, d?y= — dt2.

cos? 2¢
2.6.11. AV =4nr2 Ar+4nr Arz—l-% nAr3 is the volume contained between

two spheres of radii r and r+Ar; dV=4nr? Ar is the volume of a thin layer
with a base area equal to the sphere’s surface area 4mr? and a height Ar.

2.6.12. As=gt At-{—?gAﬁ is the distance covered by a body within the

time Af; ds=g! At =vdt is the distance covered by a body which would move at
a velocity v=gt¢ during the entire interval of time.
2.7.1. (a) It does not exist; (b) it exists and equals zero.
2.7.2. 90°. Hint. Since
{ex, x=0
y:

e—* x <0,
L0 =—1, [, (0)=1.
273. [ (@=—9(@); [, @=0¢ (.
2.7.4. Hint. For x # 0 the derivative

f’ (x) =— cos (%—) +2x sin (%) .

At x=0 the derivative equals zero:

Ax? sin KI);
f (0= lim —————=0.
Ax - 0 Ax
Thus, the derivative f’(x) exists for all x, but has a discontinuity of the
second kind at the point x=0.

2.7.5. a=2x,, b=—xi 2.7.7. Hint. The formula for the sum of a geo-
metric progression represents an identity with respect to x. Equating the deri-
vativés of both sides of the identity, we get

n41___ n
14 2x 4352+ ... faxn—1="% (l(i_)t);)x +! ;
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multiplying both sides of this equality by x and diflerentiating again, we get
—_ - 1)2 290 — Al pen+2
242t . i1 LEXZ0HD "'ﬂf’f_j;f” D! —nent s
2.7.8. sinx+3sin3x4-...4+2n—1)sin (2n—1)x—
_(@n+1D)sin@n—1)x—(2n—1) sin (2n+1) x
- 4 sin2 x :

Hint. To prove the identity multiply its left side by 2sinx and apply the
formula 2 sin a sin § = cos (a—B)—cos (2 +P). To deduce the desired formula
differentiate both sides of the identity and equate the derivatives.

2.7.9. (a) sin 2x [f’ (sin2 x) — ' (cos? x)]; (b) e/ X [exf" (e¥) [ (x) f (e¥)];

© Y, X Indx
P(x) Ing(x) @) InPex)’

2.7.10. (a) No; (b) No; (c) Yes; (d) No.

2.7.11. Hint. Differentiate the identity [(—x)=f(x) or f(—x)=—Ff(x).
This fact is easily illustrated geometrically if we take into consideration that
the graph of the even function is symmetrical about the y-axis, and the graph
of the odd function about the origin.

2.7.12. Hint. Differentiate the identity f (x4-T)=f (x).

2.7.13. F' (x)=6x2. 2.7.14. y’'=2|x|. 2.7.15. The composite function
f (9 (x)] may be non-differentiable only at points where ¢’ (x) does not exist
and where @ (x) attains such values of @ (x)=u at which [’ («) does not exist.
But the function y=u?=|x|* has a derivative y’=0 at the point x=0,
though at this point the function u=|x| has no derivative.

" __ . " _ A l z 1 L . I ,
2.7.16. (a) y"=6|x|; (b) y"=2sin Ty ST Esiny at x #0,
y” (0) does not exist, since y’ (x) is discontinuous at x=0.
2.7.17. Hint. (a) Verify that f”“%:cﬁ (k=0, 1, ..., n) and take advan-
tage of the property of the binomial coefficients. (b) Designate: [(x)=u,;
show that u,=(n—1)u,—1—u,—, and use the method of mathematical

induction.
2.7.18. Hint. Apply the Leibniz formula for the nth derivative of the pro-
X

duct of the functions u—e ¢ and v= 2.
0 at n=2k
27.19. ) (0)= | [1X3X.. X (2—1)J* at n=2k+ 1
(k=1, 2, ...).

Hint. Differentiate the identity n—2 times and, putting x=0, obtain
Y (0)=(r—22 4= (0) (n=2).
2.7.21. Hint. Take advantage of the definition
e~ Hpqq ()= (e~ ")+ D= (—2xe~*¥*)m)
and the Leibniz formula for1 the nth derivative of the product u=e-%* and

v=—2x. 2.7.22. y;=m~

27.23. x5y , =1V 1+ VI—y (—= <y<)),
x5, =2V 1—Vi—y O=<y<,
1

x‘=4—x;m;2—) (l=], 2, 3, 4) fOr x,';éO, :!:l.
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Hint. Solve the biquadratic equation x*—2x?+y=0 and find the domains
of definition of the obtained functions x; (y).
2.7.25. (a) x;=—3; x,=1; (b) x=4+1.
2.7.26. Hint. Note that the function x=2{—|1{|= £, =0, has no deri-
3, t<0
x, x=0,

vative at f=0. But t:\ic_ <0 therefore we can express y=1241{|f|=

912, 120, Sy x>0, N, .
= { 0, 1<0 through x: y—{ 0, x<0 This function is differentiable eve
rywhere. 2.7.27. a=c=—l—- b=—. 2.7.28. Hinf. The curves intersect at the

4° 2
points where sinax=1. Since at these points cos ax=0,
y,=1"(x) sinax+[ (x)acosax=[" (x)=y;,

i.e. the curves are tangent.
2.7.30. Hint. For t # nin the equations of the tangent and the normal are
reduced to the form: -

y=-cot % (x—at)+2a; y=— tan % (x—at),

respectively. For {=n (2k—1) (k=1, .) the tangent line (y=2a) touches
the circle at the highest point, and the normal (x=at) passes through the high-
est and lowest points; for {=2kn (k=0, .) the tangent line (x=at) pas-

ses through both pomts and the normal (y=0) touches the circle at thelowest

. a%y . _Al\, 2dg
point. 2.7.34. bre +y. 2.7.35. The relative error 6= 7 Snog
reliable result, i.e. the result with the least relative error, corresponds to the
value ¢=45°.

The most

Chapter III

3.1.2. (b) Yes; (c) No, since the derivative is non-existent at the point 0.
3.15. E=e—1. 3.1.7. No, since g(—3)=g(3). 3.1.9. (d) Hint. Consider
the functions

f(x) =arc sin

H— 2—{-2arctanx for |x| > 1,

g(x)=arcsin

I+x2 —2arctanx for | x| < 1.
7 _
BLIS. () E=v; () E=rmi () g:&;L”; (@ it is not appli-

cable, since the function has no derivative at the point x=0.
3.1.16. 1.26 < In(1+e) < 1.37. Hint. Write the Lagrange formula for the
function f(x)==Inx on the interval [e, e—|—l] and estimate the right-hand side

in the obtained relation: In(l-{-¢)=1 +€ (e<E<et).

3.1.17. Hint. Apply the Lagrange formula to the function f (x)=1In x on the
interval [1, 1+x], x >0, and estimate the right-hand side in the obtained re-

lation In(14+9=>+ (I<fi<ltn. 325 (2% @0 () —i.

2
1  x—tanx 1
H r —_—— T ——— —_ e&eDe 1—
3.2.3. (b) 0. Hint. Represent cot x Y Yo (c) 5 - 3.2.5. (b) el =e.
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32.6. (a) I; (b) 1. 3.2.9. (a) ;; () lna—1; (9 2 (d) “{3; @

a

..mz_n_
Mo @1 t)na @e > () %; W1 Me (m =
(n) i (0) a. (p) e_;l"—' l; ! 3.3.5 b) 0.34201
27 '§" p ’ (q) ’ (r) —'-2_ 9.0, () . .

1

4
3.3.6. 1/ 83 ~ 3.018350. Hind. 1/83—1/81+2—3<1—|-8l> . Apply the bi-

nomial formula and retain four terms. -
3.3.7. Hints. (b) Write the Maclaurin formula for the function f(x)=tanx
with the remainder R, (x); (c) write the Maclaurin formula for the function
1

fy= +x)—2_ with remainders R, (x) and Rj (x).

1 1 1 x ¥ xt
e x2 L 43 __ - B 5): T
1-43-(3)/’(16) g ¥ g =g to®); () [W=x—-F+F—1
X
* 5
+ 5o ().
l . 1 . 1 .
343. (b) —55 (O —qi @z @ L
2 5 1 xz  xt xS X
4.4, Y T S S XXX _
3.4.4. (a) 1 +2x+x 3 5 15x,(b) 5 12—}—45,(0)1 2—!—
x2  xt
127 720°
3.5.1. (d) The function decreases on the interval (—o, 0) and increases on
(0, o); (e) the function increases on the intervals | —oo, §> and (3,-+ o)
and decreases on (—; s 3>; (f) the function increases over the entire number
scale.

3.5.2. (b) The function increases on the intervals <0, %) and (511 2n>

and decreases on (% R E%

3.5.8. (a) The function increases throughout the number scale; (b) the func-
tion increases on the interval (—1, 0) and decreases on (0, 1); (c) the function
decreases throughout the number scale; (d) the function increases on both
intervals (—oo, 0) and (0, o) where it is defined; (e) the function decreases
on the intervals (0, 1) and (1, e) and increases on (e, + oo); (fy the function
decreases on the intervals (—oo, 1) and '(l, ), increases on (—I, I).
3.5.10. a<<0. 3.5.11. b=>1. 3.6.1. (b) The minimum is f(1)==f(3)=3, the

maximum [ (2)=4; (d) the minimum f (—7—>::——l 3.6.2. (b) The minima

5 24
are f (£1)=V 3; the maximum f (0)=2.
3.6.3. (b) The maximum is f(—2)= 160 the minimum f (0) =
3.6.7. (b) The minimum is f(0)=0.

3.6.8. (b) On the interval [0, 2xt]: the minimum is f<g>=—4; the maxi-

mum f T =4. 3.6.10. (a) The minimum is f (0) =0, the maximum [ (2) =4e-2,

(b) the minimum is f(—2)=—1, the maximum f (2)=1; (c) the maximum is
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5 S
/(0)=0, the minimum f(%):—?g—S ‘/31, (d) the maximum is f (£2) = —1,

the minimum f(O) 7;  (e) the maximum is f(—3)=3?/ 3, the minimum

F2)=— 1/ 4.

3.6 11. (a) There is no extremum; (b) there is no extremum; (c) the ma-
ximum is [ (0)=0; (d) the minimum is f(0)=

3.7.1. (c) The greatest value is f(1)=—, the least value f(0)=0; (d) the

greatest value is f(j: —;—-) =—V—§, the least value f(41)=0.

3.7.2. (b) The greatest value is y(0)=%, the least value y (i —Q) =%;
(c) the greatest value is y(4)==6, the least value y (0)=0.
3.7.6. (a) The greatest value is f(—2)=§, the least value f(3)=—377;

(b) the greatest value is f (0)=2, the least value f(42)=0; (c) the greatest
value is f(———): +0.25 In 3, the least valuef(l/_é):%-o.% In 3;(d) the

I
vs)Te
greatest value is f —g- =3 V3
est value is f(1)==1, the least value f(2)=2(1—In2); (f) there is no great-
est value, the least value is fO)y=1.

3.83. H=R V?, where H is the height of the cylinder, R is the radius of
the sphere. 3.8.7. x=asina, y=acos o, where & =0.5 arc tan 2.

Hint. The problem is reduced to finding the greatest value of the function

==4xy -+ 4x (y — x) = 4a? (sin 20 —sin? o)

, the least value f(%):—?; (e) the great-

in the interval 0 < a < -f:- 3.8.8. Ppg = ﬁv at W=W, 3.89. h=2R=
3/ 3v . . . R
=2 B 3.8.10. The radius of the cylinder base is r=-=, where R

is the radius of the cone base. 3.8.11. The equation of the desired straight

line is —+ 7 J—1.
3.8. 12 x=a—p fo for a > p and x=0 for a<<p.

3
3.8.13. v= 2b Hint. It will take % hours to cover one knot. The

appropriate cxpenses are expressed by the formula T=a—f;b.v =vi—|-bv2.

3.8.14. (p:%. Hint. At the board width a the cross-sectional area of the

trough is equal to a2 (l+-cos @) sin ¢. where @ is the angle of inclination of the
walls to the bottom.
3.8.15. % Hint. The point of fall of the jet is at a distance of o V2H

the tank base, where H-—=h—x is the height at which the orifice should be
located, v is the rate of flow; therefore the length of the jet is determined by
the expression

from

2(h— x) (h

V 2gx ]/ =2 V x(h—x).
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8.8.16. After —— hours the least distance will be equal to —g— km.

2v
3.9.1. (b) The intervals of concavity are | — o, %) and (l, o), of conve-
xity (%, l); the points of inflection are (%—, 12;—;), (1, 13); (c) the in-
tervals of concavity ate (— ¥ "3, 0) and (V 3, o), of convexity (—oo, — V3)
and (0, ¥ 3); the points of inflection are(—]fg, —Ké , (0, 0), <V§:
10
o ; (e) the curve is concave everywhere; (f) the intervals of concavity are
3-Vs 3+V5
(0, x,) and (x;, o), of convexity (x,, x,), where x;=e 2, xo=e % ; the
points of inflection are (x;, y), (x,, y,), Where
V5-3 - 3+V'5
3—1V'5\* 3+ VB\* ~3

3.9.5. (a) The point of inflection is (3, 3); the curve is convex for x < 3 and

concave for x > 3; (b) the abscissa of the point of inflection x= arc sin V51 :

2 ’
the curve is concave in ( —_i;- , arcsin J%), and convex in <arc sin Vi——l .
n

3.10.1. (c) y=0; (d) x=0; (i) y=2x as x— 4w and y=—2x as

X —>— 0. 3.10.3. (a) x=3, y=x—3; (b) y== %’5*1: (¢) y=x;
d) x=4 2; (e)y:?x——g—.

3.11.2. (a) The function is defined everywhere, it is even. The graph is sym-
metrical about the y-axis and has no asymptotes. The minimum is y(0)=1,

maxima y(l)=y(——l)=—2§-. The points of inflection are <:}; Q 23>; (b) the

* 18
function is defined in (—o0, —1) and (—1, - ). The graph has a vertical
asymptote x=—1 and an inclined asymptote y=x—3. The minimum is y (0)==0,
. 56 . . . 3296
maximum y(——4)=——27. The points of inflection are { —86, ~ 15 and

<2, é—g) (c) the function is defined in (— o0, 0) and (0, + o). The graph

has a vertical asymptote x=0. The minimum is y<%)=3. The point of inflec-

3
2
tion is <-——2— R 0) ; (d) the function is defined in the intervals (— o0, —1),

(—1, 1) and (1, oo); it is odd. The graph is symmetrical about the origin, has
two vertical asymptotes x= 11 and an inclined asymptote y=x. The minimum
. = 3 3V 3

is y(V3)=+3V Vv

5 the maximum y(—]/Tﬁ)'_——T. The point of
inflection is (0, 0); (e) the function is defined everywhere, it is even. The
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graph is symmetrical about the y-axis and has a horizontal asymptote y =0. The
minimum is y (0)= 3/4, the maxima y (+ V" 2)=2 3/2. The points of inflec-
tion are (j: 2, ‘3/74-); (f) the function is defined in (—2, 4 o). The vertical

asymptote is x= —2. The minimum is y (0)=0, the maximum y (—0.73)=0.12.
The point of inflection is (—0.37; 0.075); (g) the function is defined everywhere.

The horizontal asymptote is y=0as x — -+ 0. The maximum is y (—i—) = <%>3 .
The points of inflection are (0, 0),

3—V3 (3— V3) v3os) (3+ V3 <3+ N
) e , , e 5
4 4 4 4
(h) the function is defined and continuous everywhere. The horizontal asymptote
is y=1. The minimum is y (0)=0, the point (0, 0) being a corner point on the
. - b/

graph: y_ (0) =~ 4, (0) =+

3.12.6. 4.4934. 3.12.8. x; = —2.330; x,=0.202; x3==2.128. 3.12.11. 0.6705.
3.12.12. (a) 0.27; 2.25; (b) 0.21.  3.12.13. (a) 1.17; (b) 3.07.  3.12.14. 1.325.
3.12.15. 0.5896 and 2.2805. Hint. To approximate the smaller root more precisely
write the equation in the form x=e?-8%¥-1, to find a more accurate value of the
larger root represent it in the form x= 1.25 (14-Inx).

3.13.1. No. Hint. Show that at the point x=1 the derivative is non-exis-

tent: f_ ()=1; f+ ()= —1. .

3.13.2. Hint. Check the equality f(b)—f (@)=(b—a) f’ a—gb .

3.13.3. Hint. Apply the Rolle theorem to the function f(x)=ax"+...
...-ta,—1(x) on the interval [0, x,].

3.13.4. Hint. Make sure that the derivative f’(x)=4(x3—1) has only one
real root, x=1, and apply the Rolle theorem.

3.13.5. Hint. The derivative f’ (x)=nx"-1-+p has only one real root at an
even n and not more than two real roots at an odd n.

3.13.6. Hint. The derivative is a polynomial of the third degree and has
three roots. Take advantage of the fact that between the roots of the polyno-
mial lies the root of its derivative.

3.13.7. Hint. From the correct equality lim cosl=0 (0 < &< x), where g is
x>0

S

determined from the mean value theorem, it does not follow that lim cos%:O,
x>0

since it cannot be asserted that the variable  attains all intermediate values

in the neighbourhood of zero as x — 0. Moreover, £ takes on only such a sequ-

ence of values E for which lim cosi=0 (EEE).

3.13.8. Hint. The mistake is that in the Lagrange formula one and the same
point E is taken for f(x) and @ (x).

3.13.9. Hint. Apply the Lagrange formula to the function Inx on the interval
[b, a]; (b) apply the Lagrange formula to the function 27 on the interval [y, x].

3.13.10. Hint. With the aid of the Leibniz formula ascertain that the
coefficients of the Chebyshev-Laguerrc polynomial alternate in sign, the odd
powers of x having negative coefficients. Whence deduce that L, (x) > 0 for
x<0.
3.13.11. Hint. Using the Rolle theorem, show that inside the interval [x,, x,]
there are at least n rcots of the first derivative, n—1 roots of the second deri-
vative, and s0 on.

3.13.12. Hint. The L’'Hospital rule is not applicable here, since the deriva-
tives of both the numerator and denominator vanish at all points where the
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factor sinx (which we cancelled in computing the limit ot the ratio of deriva-
tives) vanishes.
3.13.13. Hint. Write the Taylor formula with the remainder R,:

h? h3
Fla+h)=F (@)+hi’ @ + 57 I (@55 1" (a+01h).

Comparing it with the expansion given in the problem, get the equality

L(“_i‘izﬂ—_-'_f"' (@-6,h) and pass over to the limit as h— 0.
3.13.14. Hint. Prove by using the rule of contraries. Suppose that e=— p

q’
where p and ¢ are natural numbers, p > ¢ > 1, and, using the Taylor formula,

get for n > p
p_ 1 1 1 1 p\*®
AR U TR e Y +1)'(7> @<b<l).

P

Multiply both sides of this equality by n!, and noting, that n! and

1 1 e I p\?o 1 p
(1—|——1T—|-...—f—n—!> n! are positive integers and P <7) < | -7< I,
obtain a contradictory result.

3.13.15. Hint. Verify that the tunction
sin x

f(x)—]

1 0< x< 2’ is continuous on the interval [0. —g—] .

x=0
Ascertain that the derivative ' (x) < O is inside the interval.
3.13.16. Hint. Show that [’ (x) = 0. Ascertain that

_ >0 fora< 1,
f(O)_l——a{ <0 fora>l,

and take advantage of the fact that the function increases.

3.13.17. Hint. Show that the function f (x)=xe¥ —2 increases and has oppo-
site signs at the end-points of the interval (0, I)

3.13.18. Hint. Show that the derivative

L] 1 1 ,
f(x)—-g-—l-?xsnn—)c——cos; (x #0)

. 3 . o 1 . 1
is equal to 5 at the points x_(2n+l)n (n=0, +1, £2, ...), and to—-‘? at
the points x:ﬂlﬁ-’ i.e. the derivative changes sign in any vicinity of the

origin.

3.13.19. Hint. Ascertain that the auxiliary function { (x)=f(x)—¢ (x) in-
creases.

3.13.20. Hint. Make sure that at all points of the domain of definition of the
functlon the derivative retains its sign if ad—bc £ 0. But if ad—bc=0, i.e.
a

== d , then the function is constant. 3.13.21. p=—6, ¢g=14.
3.13.22. A mimum f(xo)—O if @(x) >0 and n is even; a maximum
[ (x)=0 if @ (x) <0 and n is even; the point x, is not an extremum if n

is odd. Hint. At an even n, in a certain neighbourhood of the point xy the func-
tion retains its sign and is "either rigorously greater than zero or rigorously less
thian zero, depending on the sign of @ (x,). At an odd n the function changes
sign in a certain neighbourhood of the point x,.
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3.13.23. Hint. For x#0 f(x) >0, hence f(0) is a minimum. For x >0

the derivative f (x)=2—sm7—|--}— cos — s positive at the points =g

. . 1 L .
and negative at the points x—(2n—|—l)n' The case x < 0 is investigated ana
logously. 3.13.24. (a) 1 and 0; (b) 1 and —2.

3.13.25. (a) The least value is ncn-existent, the greatest value equals I; (b)
the function has necither the greatest, nor the lcast value.

3.13.30. Yes. Hint. Since [” (x) changes sign when passing through the point x,,
the latter is a point of extremum for the function [’ (x).

3.13.31. The graph passes through the point M (—1, 2) and has a tangent

line y—2=—(x-+1); M is a point of inflection, the curve being concave down-
ward to the left of the point M, and upward to the right of it. Hini. The func-
tion f”(x) increases and changes sign when passing through x=—1.

|
3.13.32. h=——.
o V2

3.13.33. Hint. According to the Rolle theorem, between the roots of the first
derivative there is at least one root of the second derivative. When passing
through one of these roots the second derivative must change sign.

3.13.35. Hint. The polynomial has the form ax*?4-ax20=2+ ... 4-a,_x*+a,.
Polynomials of this form with positive coefficients have no real roots.

3.13.36. Hint. Take advantage of the fact that a polynomial of an odd degree
(and, hence, also its second derivative) has at least one real root and changes

sign at least once.
4 3
3.18.37. Hint. Find lim [ 20X+ 1)
x3—2x—1

X - ®

Chapter IV
4.1.2. I =x34+x2+0.51n|2x—1|+C.

3 3
2 — -—
4.1.7. I=§-(x—|— 1) 2 +%x 2 4-C. Hint. Eliminate the irrationality from the
denominator.

4.1.14. I——l-6 arctan——l—c

4.1.15. I———-_—arctan = +C
V3 V

4.1.18. I=In|x+3+ V2L 6x11 [+C.
| Vioxk— V7

4.1.20. [ = In C.

2V'70 VIOx+ V7 ,+

4.1.21. (a) ;arctan +c (b) %(x—tl)?/;—l-C; (¢) 3tanx-

+2cotx4+C; (d) — %—[—arc tanx--C.

4.1.22. (a) ln (x4 V 14+x?)+-arcsin x+C; (b) sinx—cos x4C;
(c) 11?5 -4 51 2 ’~—|—C (d) —0.2 cos S5x—x sin ba+C.
37

4.2.3. I=—‘}f2x 5 sz—5— .
FAS Pty 4V oa—5
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2
428, |=—2 YV @0sx+C. 4.2.10. I=%(x3+3x+l)3 +c.
4.2.13. (2) 0.75 3/ TF IR +C; (b) In|nx|+C; (o) larc sin —— V_
(d) n—]-aarctan %——FC' () —2cos Vx-+C; () Lln‘* x-+1In|lnx|+C.

4.2.14. (a) (35—40x + 14x2) (1 —x) 3 +C;

140
(b) —3—(lnx-—-5) V 14 1nx4-C;

() (%—3 sin? x-|——— sin4 x) V sind x-C;
(d) ——(8+4x2+3x4) Vi=x+cC.

4.3.2. xarcsinx+ VY 1—x21-C.
4.3.14. — cos x In tan x4 1n | tan (%) |—|-C'.

4.3.17. xIn(x+V1+2)—VI1Fx4-C.

3 - S 9
4.3.18. T* ,3/x [(ln x)‘——g— In x+—8—] +C.
4.3.19. 2V 1+x arc sinx+4 Y 1—x+C.

4.3.20. —0.5 STy +cotx | +C.
3% (sin x+4-cos x In 3)
4.3.21. (3 +C.

4.3.22. <%x3——x2—|—% x+ |3> e3x - C.

4.3.23. (x“—101c2-1—2!)sinx—{-x(4x2 —20) cos x+C.

2 —_
4.3.24. 9x2 4 18x 2x+

= C.
57 s 3x-+ sin 3x +

3
4.3.25. (%—xq-sx) In x——+——~3x+C

4.3.26.

—1
3 arctanx—ﬁ—|————|—C
4.3.27. 2arccosx— +x V1i—x2+C.

3
4.3.28. (a) ——'8"%

1
sin (6x+42)— 6x7-2|-l cos (6x+2)—|—— x4

=,

2
bR x G (b)) (2 —Ta 1) @a )P g (26— T) (264D ® +

27 -
+ 355 2+ 1) ° +C.

4.4.2. (d) Hint. Apply the generalized formula for integration by parts and
express [, from the relation thus obtained

2

erx n(n—1) n
l,--— sin*=ly(asinx—ncosx) +———— lpes——5 'n:
T oa ( ) a? i at
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cos x n—2
443y =— (n—1) sint=1y o= ln-e (n=2);
cos x 1 cos x 1 X
Lb=—gamz T =" gguxTz " ‘a"7|+c-
4.44. (a) I,= _ltan"—lx——l,,_g; ly=—In|cosx|+C; [y=x+C;

l,= cott=tx—1I, o Iy=In|sinx|+C; [l,=x+C; (¢} [,=

n—1

= %x"—‘ V x? —1—a——’-1—;—l-al,,_2; /= Vx"—l—a—}-C; Io=lnlx+ Vx2+al+C.

Chapter V

x? 1 x—1 16
5.1.2. -2——2)(—!——5111 m '—— In |X+2 |+C-

5.1.5. 2In|x—1|—In|x|— = l)2+C

5.1.8. —;—_— arc tan 2—]/_|_—7——;-arc tan (x+2)+C.
5.1.10. 5x+41In x* (x4-2)* |x—213—1—C

RT 9x2 -+ 50x 468 | (x41) (x4-2)18
M e T E | e

5.1.12. —x_2——arc tan (x—2)4-C.
S B IS,
6(14+x) "6 " T—x+tax?
—5—‘—/—_3? arc tan );/._ +C.
x+2 Vx+l
Q—(xZ—_F—l)—“{—QaTC tanx—|—ln f/;i_l—l—c
5.2.2. 41/ x4+6 5/ k424 /%424 In | P/ x—1]|+C.
B 3/t +2)°
I_ arc tan 2 *-_l -+ 3 /( +2
V3 V3 V=1 Ve i+

g
+C, where (= l/-x L
5.2.7. ]/x+'+c 5.2.8. = ]/:f;‘

529 (]—%x> Vi—=x* —X'-—%arc sin x-+C.
5.3.3. —2arcian (—@4—1)

+C.

5.1.13.

-|-— arc tan x—

5.1.14.

5.24. —

+cC.
3 —
20V 2 2 +4d—x—1)

— |V EFE T —e—1] + C.

5.3.5. 2In| VX2 f2x+4—x |~
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= T
5.3.6. 1—+¥C—+Qarc tan ]/'lffc+c

sar. Al e sae GEVIERE o
Vo —x 15
5.42. 5 V1% F5—In(x+1+ V@F2x F5)+C.
2 J—
5.4.5. ?%"' VI T4C.

5.4.6. QX:_] Vitrxtl +% In|2x+142 Vxzgx+1]|+C.
1

5.4.8. o (x*—l4x+111) Vit dx+3—661In|x+24 Vx5 4x+3|+C.
5.4.9. -él-(32x~——20x—373) VI a7 4— 22;)/7_2 In|4x+5+
+2V mHo

5.4.10. 63(1.:—51)2 l/xl —|—2x——g- arc sm( -i—l)

5.4.11. —Lz)c___—‘}-l)c—ﬂ—2arc sinx_lz-l-C.

5.4.12. —1—25 i‘ff—sxz(jﬁ’;f7+c.

5.4.13. In x2-|—l+]/j:4+3x2—|—l ‘—}-C. Hint. First make the substitution
x2=1.

9

5.5.2. 3arctan 3/ x4+C. 5.5.4. _<2+ 2>4 —l—2<2+x%>—2—+c.
5.5.5. 55 (1 |—x”)l‘:——(l+x2)8+ 0(|+x e
5.5.7. 12 i/(l-;—,/x) -3 i/(u_,/
x 3
5.5.8. ]4‘—/'/x 1+§‘/7¢

(14 x2) B (3x2 —2)

5.5.9. s +c.
2 2 ___
5.5.10. V12 hr @D e

5.5.11. 35 i/(l—|—‘f/7*)8-|—c.

4 9
5 1IN _ 5 1\%
5.5.12. T<1+7> _3(14_7) ,
1 1 1
— 4 —{an3 x--C.
5.6.2. T % 551n5x+c 5.6.6. tan x- 3 tan3 x--C

5.6.10. (a) ——cotx—i——cot:"x-—%coi*”x—x—}—C;

(b)——tan2x——ln(l—|-tan x)+C_‘——1«m x4-Injcos x|+C.
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. | S I 1+ sinx
— —— sin® - — ol R
5.6.12. —sinx 3 sin® x+ lnll S x +C.
1+2tan \

2
5.6.14. ——— arc tan <
Vs V15

2 tanh 2 41
5.6.22. (a) — +S'“h e, () ]/2_3 arc tan <T2—3>+C'
5.7.3. —§ n(x-+ sz—l ix(zx'z—l) V¥=1+C.
Vx 41

574. nx+ Ve F1)—F=T"1cC.

'+c.
x—1
Ve
582 /=4 YV 1—x+2In(2—x—2VT1—x)—2(1+ ¥V 1—x) Inx+C.

5.8.5. [ ==en erc, where f= arc tan x.

5.7.7. [ =arc sin x—;

5.78. [ =

a1
Chapter VI
6.1.9. /= .§—{2—_19=44 as the area of a trapezoid whose height is 5—1=4
and bases 4X1—1=3 and 4X5—1=19.
6112 5, =160 — 04 100 g 16t +127,f’+ﬁf
3

6.2.2. (a) 1; (b) —; (o) %. 6.2.10. (a) 7—2-; (b)%ln 'zi ©) m

5
7 k4 T nooo 14
(d) z —are tan—; (e) In2; (f) I; (g) arc tan e—7 (h) E’ (i) 5’

(J)%: (k) M. 6.3.1. (c) 3</ <5. Hint. M=} (0)= 2, m=
=f(2)=%. 6.3.11. ()5‘“2" (b) —V1-|-x4 6.3.14. (b)—4—.63.15. (b)d—yz
—_—e-¥sinx. 6.3.23. (a) Inx; (b) 7. 6.3.24. (a) yi:l:;—t (b) yr— t‘mt
6.3.25. (a) The maximum is at x=1, the minimum at x=—1; (b) the
minima are at x__—2 0; 2, the maxnma at x—i L
6.4.3. (a) (substltutlonx—-asmt) (b) ————— V (substitution x=tan ¢).
24+ V'3 V3
6.4.6. (a 29— —=—t1n Z: (b) 2(1/_3—1); .
<>V l/3+ oV
. m
sin —
24 =
6.4.15. (a) 2—21In2; (b) 0.2 In 112 (c) — (d)V3—05 In 2+
sin - sin

8§12
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+ V' 3):, () 0.25In3  (substitution  sinx—cos x=1); (f) a3 (—4“——%)

(substitution x=acos{); (g)% (substitution x=2asin?¢); (h) —f;—-i——;

6.4.16. (a) %; (b) -4’1; © %m?—g(subsmution M=) (d) li;-(substi-
tution x2=a? cos? ¢+ b2 sin? ¢).

6.4.17. The substitution x=—ll- will not do, since this function is disconti-
nuous at /=0.

6.4.18. The substitution ¢ =tan % will not do, since this function is discon-

tinuous at x=nm.

6.4.19. Hint. The inverse function x=+ } 5 is double-valued. To obtain
the correct result it is necessary to divide the initial interval of integration into

two parts:
S /xzdx-g |/x2dx+s 1/x2dx

and apply the substltutlons x=— Vt5 in —2 < ¥<0 and x=—+ V15 in0<
<x< 2
6.4.20. It is impossible, since sec =1 and the interval of integration is

[0, 11.
6.4.21. It is possible; see Problem 6.4.12.

a 0 a

6.4.22. Hint. On writing S f(x)dx = S f (x) dx 4+ S f (x) dx, make the sub-
stitution x=l—l in the first i;{:egral. - 00
6.4.23. Sf(arc sin ¢) dt -+ Sf(n—arc sin ¢) dt + S f (@n 4 arc sin £) dt.
Hint. Roepresent the givenlintegra] as the sum of—lthree integrals for the in-

tervals: (0 2) (n 3—“), (-S—n 2n> and substitute the variable: x =

2 2’
= arcsin{, x=n—arc sinf, x=2n-} arc sin f respectively.
6.5.3. (1) If f(x) is an even function, then
1 11 o
( f(x) cos nxdx=2 S f (x) cos nx dx, and S f(x) sin x dx==0.
J
-5 0 -7

n a
(2) If f(x)isan odd function, then S f (x) cos nxdx-=0, and S f(x)sinnxdx=
-7

-n

J
=2gf(x)sinndx.
0
6

5.4.0. 6.63. 6—2%. 665 71V 24 6.6.6. 1—2. 6.6.13. (a)-g——l;
1 x V3 13
) =55 © T——ﬂ'l‘?ln”z‘,

6 _
@ 21 ) 2)3,

v ] . 2 .
(d) T (c) ]ﬂ2—7, (f) In —;



Answers and Hints to Ch. VI 445

6.6.14. Hint. Integrate by parts twice, putting u=(arc cosx)? the first
time and u= (arc cos x)?=1 the second time.
6.6.15. Hint. Integrate by parts, putting u=x.

6.7.4. (a) 0.601. Hini{. Estimate | f!V (x)| on the interval [%, -J—;-] and put
2n==6; (b)07462 6.7.5. 0.96
8

6.
a2
{x 2x for 0<<x<1,
|
— — <2,
F(x)= 2 for 1<x<2
(x—2)3

3 —|—— for 2< x<<3.

Continuity is checked directly. The assertion concerning the derivative re-
quires checking only at the points x=1, x=2.

6.8.2. Hinf. Make sure that the function f (x) is continuous both inside the
interval (0, 1) and at the end-points ( 11m f(x)~f(0) and hlmo Fxy=Ff(1)).
x—>1=

6.8.3. No. Hint. Consider the functlon
()= 1 if x is rational,
PH=91 1 ifbx is irrational on the interval [0, 1].

6.8.4. 1— V3. Hint. gf”(x)dx=f’ b —Ff' (a).

a
6.8.5. Hint. Putting for definiteness x > 0 and
Ex)y=n<x <n+1l,
take advantage of the additivity of the integral
1 2 X
SE(x)dx-—SE(x)dx-}-SE(x)dx-l— —I— ( E(x)dx—}—SE(x)dx
0 0 l n

6.8.6. The antiderivative F, (x) will lead to the correct result and F, (x) to

the wrong one, since this function is discontinuous in the interval [0, mt].
X

6.8.7. F(x)=y,+ S f(¢)dt. Hint. Any antiderivative F (x) can be represen-

Xo

ted in the form F (y)={ f(t)dt+C. Putting x-=x, find C=y.

| 2b p
e29—e2a
6.8.8. g =‘§' In m .

6.8.9. The function is defined on the interval [—1, 1), it is odd, and in-

creasing; convex on the interval [—1, 0] and concave on the interval [0, 1];
the point [0, O] is a point of inflection.

6.8.10. Hint. The function
-

x* at 0< x|

| at x=0
1
is continuous on the interval, it reaches the least valuc m=e ¢ a0.692 at

x=o;— and the greatest value M =1 at x=0 and at x=1.
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6.8.11. Hint. Integrate the inequality %<—<l.
6.8.12. Hint. Integrate the inequality

- P l/ I n
2——-: — —
V xsinx > ]/x 5 =x 1 5 at 0<x<6

and write Schwarz-Bunyakovsky inequality

ﬂ / [ .7T
S Vixsinxdr < ]/ S xdxgsxnxdx_ l/?' i
2V%

6.8.14. Hint. Apply the Schwarz-Bunyakovsky inequality in the form

- — 2 b b l
{;5 l/)(x).mdx] Q‘S“")d"lgmdx

6.8.15. Hint. Make the substitution arc tan x=

L

5
X

6.8.16. Hint. If f(x) is an even function, then F(x):Sf(t) dt is an odd
0

function, since
-X X

F(—x) = S F () dt:—Sf(—z)dz:—-F(x) (t=—2).

ul o
And if f(x) is an odd function, then F(x)=gf(l) dt is an even function,
n

since
—-X X

Fien= (rwa=—(i—ad=F@ «=—2

0

all the remaining antiderivatives have the form F (x)--C and, therefore, are

also even functions.
6.8.17. Hint. The derivative of the integral / with respect to a equals zero:

C=f@+T)—F(a)=

Chapter VII

7.1.4. (a) In 2; (b) %(2 Vao—1) (©) —i-; @ 1 (e) -;—

1 2 ad 2i
2.2, - —_ - A 83 LD — LAV —,
7.2.2. (a) 5 (b) -+ n P 0.2 725 . 7210 VEe
7.2.18. () p=—:  (b) p=In2: ~8 to 7215 2. 7246 2D
.2, (a)p,_g-, (b) p=In2; (c)p_ln3+. 215, . 7.2.16. —.

35 2 5 .3 8 1
7.3.4. e 7.3.6. —3-—|—7arc sin = 7.3.11. 5 7.3.13. 9. 7.3.16. Pl
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7.3.19. %. 7.3.20. %. 7.3.21. 2n— (2 V3) In (2+ V3).  7.3.22. 0.75x.
128 1 4 8 1 91
7328 1. 7324 & 73.25. . 7.3.26 z. 7.3.27. 5. 7.3.28. 5.

7.4.6. % 7.4.8. 0.75nab. Hint. The curve is symmetrical about the coordinate

axes and intersects them at the points x= ta, y= +0b.

7.4.9. (a) T85 Hint. The curve is symmetrical about the x-axis, intersecting
it twice at the origin at f= 4 1. The loop is situated in the second and third
quadrants; (b) = Hint. The points of self-intersection of the curve are found
in the following way: y=tx (), therefore y (f;) =1{,x ({;) =tyx ({5) at {; # ¢, and
x(t)=x(ty), only if x({{)=x(£,)=0, ie. {;=0; {,=2; () 8 ]5/3 .

7.4.10. 0.25mab. Hint. The curve is symmetrical with respect to both axes of
coordinates and passes twice through the origin forming two loops. Therefore, it
is sufficient to compute a quarter of the desired area corresponding to the variation

of ¢t from 0 to % and multiply the obtained result by 4.
4
7.4.11. ng;:. Hint. The curve resembles an astroid extended in the vertical

direction.

2
7.5.2. (a) 3?“; (b) %. Hint. The curve is a circle of radius —;— passing

through the pole and symmetrical about the polar axis, —%
, [ 5m na® na? o [ T =

7.5.6. 2.a (-8——1>. 758. () =i (b) . 7.5.9.a <W"V3 )
7.5.10. r;_a-‘ Hint. The curve passes through the pole forming two loops located
symmetrically about the y-axis in the first and fourth quadrants. 1t is sufficient
to calculate the area cnclosed by one loop corresponding to variation of ¢ from 0

<o<

to % and double the result thus obtained.

7.5.11. %na'z. Hint. The curve passes through the pole, it 1s symmetrical
about the polar axis and situated in the first and fourth quadrants. It is sufficient
to calculate the area of the upper portion of the figure which corresponds to

variation of ¢ from 0 to % and double the result thus obtained.

7.5.12. @ <1+%-K;—>.

7.5.13. %. Hinf. The curve is symmetrical about the coordinate axes and

intersects them only at the origin, forming four locps—one in each quadrant
(a four-leaved rose). Therefore, it is sufficient to find the area of one loop corres-

ponding to the variation of ¢ from 0 to % and multiply the result by 4.

7.5.14. V'2 ma®. Hint. The curve is symmetrical about the axes of coordi-
nates and the biscctors of the coordinate angles; it cuts off equal intercepts on
the axes. The origin is an isolated point. It is sufficient to compute the area of
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one-eighth of the figure corresponding to variation of ¢ from 0 to % and mul-
tiply the result by 8.

7.6.2. 93 n. Hint. A plane perpendicular to the x-axis at the point x will
cut the sphere along a circle of radius 7 = ) 16— 2, therefore the cross-sectio-
nal arca S (x)=mn (16— x2).

7.6.5. 0.5ma%h. Hint. The area of a triangle situated at a distance x from
the centre of the circle is equal to h Va®>—x2.

7.6.10. 2n%a%. 7.6.11. % (see Problem 7.3.9). 7.6.14. 5n%as.
Y. 16 Lo 2
7.6.16. (a) 2nab<l-{—3—6z>, (b) T (c) 7abk n.  7.6.17. 7 tan a.
7.6.18. (a) 12m; (b) i—gn; (c) %431; (d) n%  (e) 6?n; ) —4—na3.
2c 2¢
l 1 3( a "'—) 2, Ta® gc
7.6.19. % 7.6.20. o 7.6.21. T e® ¢ “+natc= 5 sinh — +
+ ma%. 7.6.22. 210(61[—;—5 V' 3). Hint. The abscissas of the points of intersec-
. . .. m 19 127 168
tion are: x;= —F =g 7.6.23. R 7.6.24. — . 7.6.25. T0Bab2"

Hint. Represent the evolute of the ellipse parametrically as follows: x:% cos® ¢;
2
y=——i—)—sin3t, where c¢=V a2 —b2. 7.6.26. gnad 7.6.27. V_;

3 — —
n;z [VQIH(H‘ )/2)_% . Hint. Pass over to polar coordinates.

4 112 eb— -t — S —

_Z nad < - G .
7.6.28. ;o @, 77257 174 Ing——. 1.7.8. (a) V6+1n (Ve V3
a(a+-2)

o 1t 21/-3
2 2

P Xe=gi (c) —3 - 7.7.9.
7.7.10. 10 <;—l— V—5> 7.8.2. 8a. 7.8.5. 3. Hinf. The curve intersects the

(b) 21n (2— V' 3). Hint. x;= —

3
axes at 1,—=0 and ,—=1/ 8. 7.8.7. 41 3. 1788. 16a. 7.8.9. 8na. Hint.
3

3__pH3
Sce Fig. 79.  7.8.10. 4-%7[’—2 7.8.11. % 7.8.12. At t=%“ the point
2t V3\ 3a 5 3 .
M {a (T"T) —2-]. 79.5. 15ma.  7.9.9. 55+ In 5. 7.9.10. 2V 2 na.
Hint. The curve p=2 ¥ 2 acos <q>——% is a circle.
_ — 145 6
7.9.11. p[VermOG+vV2]. 17108 (a) —?1; (b) %
1
7.10.5. 2n _ 7.108. =. 7.10.14. (MY 17—2) X
V3> 2 9
7.10.15. 23‘[[V2+ln(l+ VvV 2)]. 1.10.16. 53—6na2. 7.10.17. 2 V a(er—2).
7.10.18. 29.67.  7.10.19. 4x%q%.  7.10.20. l—2§na . 7J0L7. 16a* where a 1s

5
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the radius of the cylinders base. 7.11.8.  1.5m. 7.11.10.  (a) %;
(b) 576—% arc tan%. 7.11.11.  (a) T%z; (b_) %2(34_4 V7o),
() —:3—(531—{-6 V 3). 7.11.13.%(2 In3—1). 7.11.14. % (5Vs5—2 V2.
7.11.17. 2n -‘%— 7.11.18. ma* V pg. 7.11.19.  mab (%_H_Q_;)
7.11.20. “‘g’h. 7.11.21. 120, 7.11.22. <Lg—6-> ab%a.  7.11.23. —;—]na".
7.11.24. (a) [(VET— V' 2)+(V2+1) Vg[']; (b) %‘g(mlfﬁ‘l"

) 13 1 2002
+?‘n3—+§@§>; (c) 2nrh.  7.12.2. -§—1’R3. 7.12.4.%. 7.12.9. —M’i <.

7.12.11. mabhd. 7.12.12. @rdh®.  7.12.13. TlénRzH. 7.13.3. 0.257R3.

7.13.7. sz%(5 V5—1); My=% V?’JV% In (24 V'5). 7.13.8. M, =

=% Vs My=¢ V@TFE. 1139 V2+h(+ V2. 7.13.10. 0.15.
_ab® _ad% (a--3b) h3 o
T L=T0 fy="o. 7a3a2 ST 71846 xo—y, =0.da.
H 5
7.13.19. xc—_—yc=—£51-. 7.13.26. x‘.=RS'2°‘; ye=0. T.13.28. x,=; y,=0.
2T__pT 2n__ Qpm
7.13.29, x,=— 22E=) =222 74350, 45,
e"—eT er — 2
70331 x,—0; yo—=-R  zaar |22 4Pt botn d n e
A33L x, =0 yo=7—. SR Pl mn m and n are
even; Q‘m—n { if both m and n are odd; 'u, if m and n are of different
m n m n

evenness. Hint. The curves y” =x" and y"=x" have two common points (0, 0)
and (1, 1) in the first quadrant. The area of the figure situated in the first

n m

quadrant is equal to S (x'" —x" )dx . Depending on evenness and oddness
0

of m and n this figure is mapped symmetrically either about the coordinate
axes (m, n even) or about the origin (m, n odd). 1f m and n are of different
evenness, then the curves enclose only the area lying in the first quadrant.
7.14.3. Hint. Take advantage of the formula for computing the area in
polar coordinates.
7.14.4. Hint. Since the figures are ofbequal area, the function S (x) appear-

ing in the formula for the volume V= \ S (x) dx is the same and, consequently,
g q y

a
the values of the integrals are also equal.
7.14.5. Hini. The formula follows directly from Simpson’s formula

Sh!(«\’) =5 [1@+9i(5)+im].
0
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nrex?
for a sphere S(x)=m(r2—x2); for a cone S (x)= s

; for a paraboloid of

revolution S (x)=2npx and so on.

7.14.6. Hint. Divide the curvilinear trapezoid into strips Ax wide and write
an expression for the element of volume AV =2mn xy Ax.

7.14.8. Hint. Use the formula for calculating the length of a curve represen-
ted parametrically.

7.14.9. ln-’—;—. Hint. The point (f=1) nearest to the origin with a vertical
tangent corresponds to t:g—.
7.14.13. 2n-1£53. 7.14.14. V2. 7.14.16.  (a) 0.5In(x+y);

(b) ——05arc sin x.
Chapter VIII
8.1.2. (b) %ln 2, (¢)1; (d) 1—Ing; (e) m; () i

8.1.6. (a) It diverges. Hint. ln(x +l) — for x > Ve—1; (b) converges;

(c) diverges. Hint. ?+C—?_Sx > V.—l_; (d) converges; (e) diverges.
x

8.1.17. (a) 0. Hmt Represent the integral as the sum of two items:
1

In x Inx ) - b
l—|—x2d Sl—l—x‘d -I—SI .dx. Make the substitution x== r in the se-
| 1
nx m!
cond summand and show that (l—|— 5 dx= — S sdx;  (b) 5

0
2

8.2.2. (a) Qa?; (b) it diverges; (c) diverges; (d) 6|3/2_, (e)
(f) converges for p < | and diverges for p=>=1.

8.2.7. (a) It converges; (b) diverges; (c) converges; (d) converges;
(e) diverges; (f) converges. 8.2.11. (a) It diverges; (b) 2V In2; (o) 5—71
8.2.14. (a) It converges; (b) diverges; (c) diverges; (d) converges;
(e) converges. 8.3.7. (a) i' (a) 2n.  8.3.8. 3ma®.  8.3.9. % 8.3.10. %

8.3.14. mgR. Hint. The law of attraction of a body by the Earth is deter-
mined by the formula f= gffz, where m is the mass of the body, r is the

distance between the body and the centre of the Earth, R is the radius of the
Earth.

8.3.15. e;. Hint. Electric charges interact with a force ‘-2%, where e; and e,
are the magnitudes of the charges and r is the distance between them.
8.4.1. Hint. Represent the integral in the form of the sum

+ o a

+ @
dx dx dx
S xPln‘Ix—le’ln‘Ix + S xF1n?x (@>1
1 1 a

n.
3’
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and apply special tests for convergence, taking into consideration that in the
first integral Inx=In[l 4 (x—1)]~x—1 as x— 1, and in the second integral
the logarithmic function increases slower for g < 0 than any power function.

8.4.2. Hint. Making the substitution x7=/¢, reduce the given integral to the

2 el g
form + 7 S‘ t9-1 sint di. Represent the integral S t9=1sintdt as the sum

0
1

0
. + *® .
Ssigldt + S si%ldt, where a=1 —’%. and show that the integral conver-
0 1

ges absolutely for | < o < 2 and conditionally for 0 < ¢ << 1. Note that at

Bj{;—l—zo the integral is reduced to the conditionally converging integral

+ >
ﬂ?—édt, and at %:—l to the diverging integral —s%l:—ldt.
0

s

1/2
8.4.3. Hint. Represent the given integral as the sum S xP=1(1—x)7-'dx+
1 0
+ S xP~1(1—x)9-1dx and apply the special comparison test.
1/2

T
8.4.4. Hint. If |a| #|B], then S sin ax-sin fx dx is bounded.

0
8.4.5. Hint. By substituting ¢=x2? the integral is reduced to the Euler
gamma-function.

®© ® @® aB
8.4.6.  Hint. S‘H—ax)—;—:f—(-@—ﬁdxzs f—iﬁdx—g Z%dxz‘g\ f-—)(:c—)dx=
ax aB aa

a

Ba

- B f(x)—A . .

=Aln o + — dx. Applying the generalized mean value theorem, show
aa

that the last integral tends to zero as a — 0.
8.4.7. Hint. Take the function f(x)=e—* for the first integral, the function
f (x)=cos x for the second and take advantage of the results of Problem 8.4.6.
8.4.8. It converges for m < 3 and2 diverges for m = 3. Hint. Take advantage

of the equivalence of 1—cos x and % as x— 0.

dx

J
n 2
. dx .
8.4.9. Hint. Represent S as the sum of two integrals S
0

(sin x)k g (sin x)*

J
+ X .dx k; reduce the second integral to the first one by making the substi-
P (sin x)
2

tution x=n—1 and take advantage of the equivalence of sinx and x as x — 0.
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1
L 3
8.4.10. Hint. Ss_'i’f_%jcﬂzdngsinx(l?cosx) v+
X
b 0

4 S sﬂq_f(_l,x___?ms")dx. The integrand of the first summand on the right side is
2

an infinitely large quantity of order s—3 as x — 0. By the special comparison
test the first integral converges absolutely for s—3 < 1,i.e. s < 4, and diverges
for s=4. The second integral in the right side converges absolutely for s > 1,
since the function sin x (1 —cos x) is bounded. But if 0 < s<C 1, the second in-
tegral converges conditionally as the difference of two conditionally converging

integrals S Smxdx and Swdx (see Problem 8.1.13).

2 2
8.4.11. Hint. Integral (2) can diverge. For example, let

)_{ I, 2nn<<x<<(2n--1)m,
PO=Y 1 @+l m<r< @ito)m

sinx

® 0
The integral S’S’%Cdx converges (see Problem 8.1.13). But S P (x)dx=
0

»

®
SI sin x| dx diverges (see the same problem). But if the integral Sf(x) dx con-
0

a

verges absolutely, then the integral S f (x) @ (x) dx also converges absolutely: if

a
| (x)] < C, then |f(x)@(x)| < C|f(x)], and it remains to use the comparison
theorem.

8.4.12 Hint. Transform the integral [ (x) into f(x)= S In sinzdz by the
J
Kl

substitution y-—%—z Taking into account that sinz=2sin %- + COS — 2 , reduce

the above to the sum ol three integrals.
8.4.13. Hint. Putling u=In cos x, cos 2nx dx=dv, integrate by parts and get

dx, n # 0. Sir.ce

2
the equality / ?l S sin 2nx
n
0

sin 2nx = sin (2n—2) x-cos 2+ sin 2x-cos (2n—2) x,
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roo
1 : i
B N _ sin x
l,= 5 S sin (2n—2) * o xdx—l-
Lo
kel o =

2 2
+Ssin (2n — 2) x-sin 2xdx + 2 \ sin®x-cos (2n — 2) x dx
0 0 h

Check by direct calculation that for n =2 the second and the third summands
equal zero. Therefore, for n=2

n
2 . |
| . osinx . n—
/,,=—§’—1gsm (2n——2)>.cosxdx— )
0
2
. 1 R sinx ,_om N ] o, __? 1 fa fad
Since I,-_—T‘S\sm 2xas--;dx.-7 we have [,= 7T 13_3.7.T_m
0

by
—_(—])=1
and by nduction, /,=(—1) o



